Approximate method of solving Edwards' equation with nonrenormalizable interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 339-348
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of an exactly solvable model with nonrenormalizable interaction (Edwards' equation) a method of differential interpolation is put forward and investigated; this enables one to construct series of a modified perturbation theory in powers of $g^{\nu}(\ln g)^{n_\nu}$, where $n_\nu$ is an integer and $\nu$ in the general case is not an integer. It is shown that the approximate solutions differ from the exact solutions only by finite terms.
@article{TMF_1973_16_3_a5,
author = {V. Sh. Gogokhiya},
title = {Approximate method of solving {Edwards'} equation with nonrenormalizable interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {339--348},
year = {1973},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a5/}
}
V. Sh. Gogokhiya. Approximate method of solving Edwards' equation with nonrenormalizable interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 3, pp. 339-348. http://geodesic.mathdoc.fr/item/TMF_1973_16_3_a5/
[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR
[2] A. T. Filippov, V. S. Gogokhia, Preprint JINR E2-6043, Dubna, 1971 | MR
[3] A. Bastaie. al., Nuovo Cim., 30 (1963), 1512 | DOI
[4] S. F. Edwards, Phys. Rev., 90 (1953), 284 | DOI | MR | Zbl
[5] B. A. Arbuzov, A. T. Filippov, Preprint OIYaI P-1910, Dubna, 1964 ; Nuovo Cim., 38 (1965), 796 | MR | Zbl | DOI | MR
[6] A. T. Filippov, Yu. N. Yepifanov, Preprint JINR E2-6017, Dubna, 1971
[7] M. Gell-Mann, The Eighfold Way. A Theory of Strong Interection Symmetry, CTSL-20, 1961 | MR | Zbl
[8] A. Erdely, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. I, New York–Toronto–London, 1953