On the discrete spectrum of the Hamiltonian of an $n$-particle quantum system
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 235-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions are obtained for the discrete spectrum of the energy operator of an $n$-particle
system to be finite in the space of functions of given permutational and rotational
symmetry. It is shown that under the same conditions the boundary of the continuous speetrum
cannot be an eigenvalue of infinite multiplicity. For application of the basic theorem,
the etgenvatues of the Schrödinger operator are investigated as functions of the coupling
constant.
@article{TMF_1973_16_2_a9,
author = {M. A. Antonets and G. M. Zhislin and I. A. Shereshevskii},
title = {On the discrete spectrum of the {Hamiltonian} of an $n$-particle quantum system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--246},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a9/}
}
TY - JOUR AU - M. A. Antonets AU - G. M. Zhislin AU - I. A. Shereshevskii TI - On the discrete spectrum of the Hamiltonian of an $n$-particle quantum system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 235 EP - 246 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a9/ LA - ru ID - TMF_1973_16_2_a9 ER -
%0 Journal Article %A M. A. Antonets %A G. M. Zhislin %A I. A. Shereshevskii %T On the discrete spectrum of the Hamiltonian of an $n$-particle quantum system %J Teoretičeskaâ i matematičeskaâ fizika %D 1973 %P 235-246 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a9/ %G ru %F TMF_1973_16_2_a9
M. A. Antonets; G. M. Zhislin; I. A. Shereshevskii. On the discrete spectrum of the Hamiltonian of an $n$-particle quantum system. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 235-246. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a9/