Nonlinear vector field having an exact particle-like solution with finite energy and phase wave
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 274-278
Cet article a éte moissonné depuis la source Math-Net.Ru
A model relativistically invariant Lagrangian corresponding to a nonlinear wave equation (with three arbitrary constants $m_1$, $m_2$, and $m_3$) for a complex four-vector field and exact particle-like solutions to this equation are given. The energy, momentum, “charge”, and spin of the corresponding “particles” are calculated as functions of $m_1$, $m_2$, $m_3$. The values of $m_1$, $m_2$, $m_3$ at which the particle parameters agree with the corresponding parameters of the $\rho$ mesons are given. For these values of $m_1$, $m_2$, and $m_3$, the nonlinearity of the field is effectively manifested only within the limits of a particle.
@article{TMF_1973_16_2_a12,
author = {I. M. Kustanovich and V. A. Morozov},
title = {Nonlinear vector field having an exact particle-like solution with finite energy and phase wave},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {274--278},
year = {1973},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a12/}
}
TY - JOUR AU - I. M. Kustanovich AU - V. A. Morozov TI - Nonlinear vector field having an exact particle-like solution with finite energy and phase wave JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 274 EP - 278 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a12/ LA - ru ID - TMF_1973_16_2_a12 ER -
%0 Journal Article %A I. M. Kustanovich %A V. A. Morozov %T Nonlinear vector field having an exact particle-like solution with finite energy and phase wave %J Teoretičeskaâ i matematičeskaâ fizika %D 1973 %P 274-278 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a12/ %G ru %F TMF_1973_16_2_a12
I. M. Kustanovich; V. A. Morozov. Nonlinear vector field having an exact particle-like solution with finite energy and phase wave. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 274-278. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a12/
[1] M. Muraskin, Ann. Phys. (USA), 59 (1970), 27 | DOI | MR
[2] M. Muraskin, Int. J. Theor. Phys., 4 (1971), 49 | DOI
[3] M. Born, L. Infeld, Proc. Roy. Soc. (London), A144 (1934), 425 | DOI
[4] G. Mie, Ann. Phys., 39 (1912), 1 | DOI | Zbl
[5] G. Rosen, J. Math. Phys., 6 (1965), 1269 | DOI | MR
[6] G. Rosen, J. Math. Phys., 7 (1966), 2066 | DOI | MR
[7] G. M. Derrick, Wan Kay-Kong, J. Math. Phys., 9 (1968), 232 | DOI
[8] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR
[9] B. Feld, Modeli elementarnykh chastits, «Mir», 1971