Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 247-259
Voir la notice de l'article provenant de la source Math-Net.Ru
A new expression is obtained for the third group integral in terms of two- and three-particle
$S$ matrices. For Bose and Fermi statisttes, the result is essentially simpler than for Boltzmann
statistics. The singularities of the three-particle $S$ matrix are described compactly.
The particles are assumed to be one-dimensional.
@article{TMF_1973_16_2_a10,
author = {V. S. Buslaev},
title = {Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. {Third} group integral},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {247--259},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/}
}
TY - JOUR AU - V. S. Buslaev TI - Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 247 EP - 259 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/ LA - ru ID - TMF_1973_16_2_a10 ER -
%0 Journal Article %A V. S. Buslaev %T Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral %J Teoretičeskaâ i matematičeskaâ fizika %D 1973 %P 247-259 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/ %G ru %F TMF_1973_16_2_a10
V. S. Buslaev. Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 247-259. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/