Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 247-259

Voir la notice de l'article provenant de la source Math-Net.Ru

A new expression is obtained for the third group integral in terms of two- and three-particle $S$ matrices. For Bose and Fermi statisttes, the result is essentially simpler than for Boltzmann statistics. The singularities of the three-particle $S$ matrix are described compactly. The particles are assumed to be one-dimensional.
@article{TMF_1973_16_2_a10,
     author = {V. S. Buslaev},
     title = {Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. {Third} group integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--259},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/}
}
TY  - JOUR
AU  - V. S. Buslaev
TI  - Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 247
EP  - 259
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/
LA  - ru
ID  - TMF_1973_16_2_a10
ER  - 
%0 Journal Article
%A V. S. Buslaev
%T Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 247-259
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/
%G ru
%F TMF_1973_16_2_a10
V. S. Buslaev. Trace formula and singularities of the $S$ matrix for a system of three one-dimensional particles. Third group integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 247-259. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a10/