Asymptotic fields and the $S$ matrix in the lowest sector of the Lee model
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 157-168
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that in the lowest sector of the Lee model there exist asymptotic fields that allow
a particle interpretation. The $S$ matrix calculated by means of these fields is equal to the $S$
matrix obtained by solving the Lipmann–Sehwinger equation [2].
@article{TMF_1973_16_2_a1,
author = {L. A. Dadashev},
title = {Asymptotic fields and the $S$ matrix in the lowest sector of the {Lee} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {157--168},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a1/}
}
L. A. Dadashev. Asymptotic fields and the $S$ matrix in the lowest sector of the Lee model. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a1/