Wick polynomials in a space with indefinite metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 145-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fok representation of canonical commutation relations is extended in a Poincaré-invariant manner to a class of test functions that contains, in particular, functions with power and logarithmic asymptotic behavior on the mass hyperboloid. In the space with indefinite metric in which the extended representation is realized, the Wick polynomials of free fields at a fixed point of space-time are well-defined operators.
@article{TMF_1973_16_2_a0,
     author = {O. I. Zavialov},
     title = {Wick polynomials in a space with indefinite metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--156},
     year = {1973},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a0/}
}
TY  - JOUR
AU  - O. I. Zavialov
TI  - Wick polynomials in a space with indefinite metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 145
EP  - 156
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a0/
LA  - ru
ID  - TMF_1973_16_2_a0
ER  - 
%0 Journal Article
%A O. I. Zavialov
%T Wick polynomials in a space with indefinite metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 145-156
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a0/
%G ru
%F TMF_1973_16_2_a0
O. I. Zavialov. Wick polynomials in a space with indefinite metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/TMF_1973_16_2_a0/

[1] N. N. Bogolyubov, O. S. Parasyuk, Acta Math., 97 (1957), 227 ; K. Hepp, Commun. Math. Phys., 2 (1966) | DOI | MR | Zbl | DOI | MR | Zbl

[2] B. V. Medvedev, M. K. Polivanov, Lektsii v Mezhdunarodnoi zimnei shkole teoreticheskoi fiziki, t. I, Dubna, 1964, 77

[3] R. Haag, Ann. Phys., 11 (1963), 29 | DOI | MR

[4] P. Kristensen, L. Mejlbo, Thoe E. Poulsen, Commun. Math. Phys., 1 (1965), 175 | DOI | MR | Zbl

[5] A. Grossmann, Commun. Math. Phys., 4 (1967), 203 | DOI | MR | Zbl

[6] R. Ascoli, G. Epifanio, A. Restivo, Commun. Math. Phys., 18 (1970), 291 | DOI | MR | Zbl

[7] J. M. Cook, Trans. Amer. Math. Soc., 74 (1953), 222 | DOI | MR | Zbl

[8] B. M. Levitan, Pochti-periodicheskie funktsii, GITL, 1953 | MR

[9] F. A. Berezin, Mat. sb., 60 (102) (1963), 425 | MR

[10] Yu. P. Ginzburg, I. S. Iokhvidov, UMN, XVII:4 (106) (1962), 3 | MR