Local two-particle quasipotential in the relativistic three-body problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 42-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the possibility of using in the three-dimensional relativistic equations for a three-body system a quasipotential that in the approximation of a binary interaction contains “local” two-particle quasipotentials. It is shown that the part of such a quasipotential that corresponds to binary interactions can be expressed in a definite manner in terms of the physical two-particle scattering amplitudes irrespective of an expansio of these amplitudes in a small coupling constant. It is shown that all 16 scattering amplitudes, obtained as solutions of these three-particle equations, are equal to the physical amplitudes on the mass shell.
@article{TMF_1973_16_1_a3,
     author = {A. N. Kvinikhidze and D. Ts. Stoyanov},
     title = {Local two-particle quasipotential in the relativistic three-body problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a3/}
}
TY  - JOUR
AU  - A. N. Kvinikhidze
AU  - D. Ts. Stoyanov
TI  - Local two-particle quasipotential in the relativistic three-body problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 42
EP  - 51
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a3/
LA  - ru
ID  - TMF_1973_16_1_a3
ER  - 
%0 Journal Article
%A A. N. Kvinikhidze
%A D. Ts. Stoyanov
%T Local two-particle quasipotential in the relativistic three-body problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 42-51
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a3/
%G ru
%F TMF_1973_16_1_a3
A. N. Kvinikhidze; D. Ts. Stoyanov. Local two-particle quasipotential in the relativistic three-body problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 42-51. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a3/