Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 33-41
Cet article a éte moissonné depuis la source Math-Net.Ru
The renormalized $S$ matrix corresponding to a translationally-invariant Hamiltonian is considered. The relationship is found between this matrix and the matrix coastructed from the Hamiltonian in which a smooth cutoff is made with respect to the spatial variables.
@article{TMF_1973_16_1_a2,
author = {V. N. Likhachev},
title = {Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {33--41},
year = {1973},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/}
}
TY - JOUR AU - V. N. Likhachev TI - Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 33 EP - 41 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/ LA - ru ID - TMF_1973_16_1_a2 ER -
V. N. Likhachev. Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/
[1] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, TMF, 2 (1970), 1
[2] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, TMF, 10 (1972), 1
[3] A. B. Migdal, Metod kvazichastits v teorii yadra, «Nauka», 1967