Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 33-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The renormalized $S$ matrix corresponding to a translationally-invariant Hamiltonian is considered. The relationship is found between this matrix and the matrix coastructed from the Hamiltonian in which a smooth cutoff is made with respect to the spatial variables.
@article{TMF_1973_16_1_a2,
     author = {V. N. Likhachev},
     title = {Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {33--41},
     year = {1973},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/}
}
TY  - JOUR
AU  - V. N. Likhachev
TI  - Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 33
EP  - 41
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/
LA  - ru
ID  - TMF_1973_16_1_a2
ER  - 
%0 Journal Article
%A V. N. Likhachev
%T Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 33-41
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/
%G ru
%F TMF_1973_16_1_a2
V. N. Likhachev. Renormalized $S$ matrix obtained by a smooth interaction cutoff with respect to the spatial variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a2/

[1] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, TMF, 2 (1970), 1

[2] V. N. Likhachev, Yu. S. Tyupkin, A. S. Shvarts, TMF, 10 (1972), 1

[3] A. B. Migdal, Metod kvazichastits v teorii yadra, «Nauka», 1967