On the one-dimensional scattering of plane waves on an arbitrary potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 105-115
Cet article a éte moissonné depuis la source Math-Net.Ru
The scattering problem is solved for a wave equation on the axis $(-\infty,\infty)$ with nonnegative potential $q$, $q(x)=0$, $x<0$. It is shown that the, in general, nonunitary reflection coefficient is equal to the diagonal element of the complete (unitary) $S$ matrix.
@article{TMF_1973_16_1_a11,
author = {B. S. Pavlov},
title = {On the one-dimensional scattering of plane waves on an arbitrary potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--115},
year = {1973},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a11/}
}
B. S. Pavlov. On the one-dimensional scattering of plane waves on an arbitrary potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a11/
[1] P. P. Kulish, Matem. zametki, 4 (1968), 677 | MR | Zbl
[2] T. Regge, Nuovo Cim., 8 (1958), 671 | DOI | MR | Zbl
[3] B. S. Pavlov, DAN SSSR, 193 (1970), 36 | MR | Zbl
[4] B. S. Pavlov, DAN SSSR, 206 (1972), 6 | MR
[5] P. Laks, R. Filipps, Teoriya rasseyaniya, «Mir», 1971 | MR
[6] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, t. 1, IL, 1960 | MR
[7] L. D. Faddeev, UMN, 14:4 (1959), 57 | MR | Zbl
[8] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, 1963
[9] M. Sh. Birman, Izv. AN SSSR, ser. matem., 27:4 (1963), 883 | MR | Zbl