Example of a self-localizing nonlinear relativistic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 100-104
Cet article a éte moissonné depuis la source Math-Net.Ru
The real scalar relativistic field with self-interaction $(\lambda/4)\psi^4$ in the Lagrangian is studied. An exact solution is obtained for the one- and three-dimensional cases. It is shown that in the one-dimensional case the field is localized in a certain region whose size varies in accordance with a Lorentz transformation. The energy and momentum of the field are inversely proportional to the coupling constant, and they are related by the same relativistic equation as for a particle with a certain internal energy. In the three-dimensional case the field is localized only in one dimension.
@article{TMF_1973_16_1_a10,
author = {A. S. Davydov and N. I. Kislukha},
title = {Example of a self-localizing nonlinear relativistic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {100--104},
year = {1973},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a10/}
}
A. S. Davydov; N. I. Kislukha. Example of a self-localizing nonlinear relativistic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 100-104. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a10/
[1] W. Thirring, Helv. Phys. Acta, 26 (1953), 33 | MR | Zbl
[2] A. A. Borgardt, ZhETF, 33:1 (7) (1957), 59 | Zbl
[3] C. A. Hurst, Proc. Cambr. Phil. Soc., 48 (1952), 625 | DOI | MR | Zbl
[4] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, GITTL, 1957 | MR
[5] L. J. Schiff, Phys. Rev., 84 (1951), 1 | DOI | Zbl
[6] W. Thirring, Z. Naturforsch., 7a (1952), 63 | MR | Zbl
[7] B. J. Malenka, Phys. Rev., 85 (1952), 628 | DOI
[8] D. Ivanenko, D. Kurgelaidze, S. Laran, DAN SSSR, 88 (1953), 254 | MR
[9] N. V. Mitskevich, ZhETF, 29 (1955), 354 | MR | Zbl
[10] V. G. Yaichnitsyn, ZhETF, 31 (1956), 1082