$CPT$-invariance in the theory of local observables
Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 21-32
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions are found for the introduction of a $CPT$ operator in Haag-Araki theory. The classical theorems of field theory relating to the existence of a $CPT$ operator are generalized.
@article{TMF_1973_16_1_a1,
author = {Yu. M. Zinoviev},
title = {$CPT$-invariance in the theory of local observables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {21--32},
year = {1973},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a1/}
}
Yu. M. Zinoviev. $CPT$-invariance in the theory of local observables. Teoretičeskaâ i matematičeskaâ fizika, Tome 16 (1973) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/TMF_1973_16_1_a1/
[1] H. Epstein, J. Math. Phys., 8 (1967), 750 | DOI | MR | Zbl
[2] R. Iost, Obschaya teoriya kvantovannykh polei, «Mir», 1967 | MR
[3] R. Striter, A. S. Vaitman, RST, spin i statistika i vse takoe, «Nauka», 1966
[4] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR
[5] Zh. Dedonne, Osnovy sovremennogo analiza, «Mir», 1964
[6] L. Schwartz, Théorie des distributions, Vol. I, Hermann, Paris, 1957 | MR | Zbl
[7] L. Michel, Phys. Rev., 137 (1964), B405 | DOI | MR
[8] L. Michel, Lecture Notes in Physics, 6, Springer-Verlag, Berlin, 1970 | MR | Zbl