Boson representation of angular momentum.~I
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 367-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By analogy with Schwinger's two-boson representation, a formalism is developed for the
angular momentum that uses an arbitrary number of Bose operators. Operators, eigenfunctions,
and also coherent states of the angular momentum are constructed. Their main
properties are investigated: for example, completeness, and transformation under rotation,
and for coherent states uncertainty relations and relation to the classical limit are also
investigated.
			
            
            
            
          
        
      @article{TMF_1973_15_3_a8,
     author = {V. V. Mikhailov},
     title = {Boson representation of angular {momentum.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--374},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a8/}
}
                      
                      
                    V. V. Mikhailov. Boson representation of angular momentum.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 367-374. http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a8/
