Boson representation of angular momentum. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 367-374
Cet article a éte moissonné depuis la source Math-Net.Ru
By analogy with Schwinger's two-boson representation, a formalism is developed for the angular momentum that uses an arbitrary number of Bose operators. Operators, eigenfunctions, and also coherent states of the angular momentum are constructed. Their main properties are investigated: for example, completeness, and transformation under rotation, and for coherent states uncertainty relations and relation to the classical limit are also investigated.
@article{TMF_1973_15_3_a8,
author = {V. V. Mikhailov},
title = {Boson representation of angular {momentum.~I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {367--374},
year = {1973},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a8/}
}
V. V. Mikhailov. Boson representation of angular momentum. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 367-374. http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a8/
[1] J. Schwinger, Quantum Theory of Angular Momentum, ed. L. C. Biedenharn, H. Van Dam, Academic Press, 1965 | MR
[2] R. Bonifacio, D. M. Kim, M. O. Scully, Phys. Rev., 187 (1969), 441 | DOI
[3] P. W. Atkins, J. C. Dobson, Proc. Roy. Soc. Lon., A321 (1971), 321 | DOI | MR
[4] V. V. Mikhailov, Phys. Lett., 34A (1971), 343 | DOI
[5] R. J. Glauber, Phys. Rev., 131 (1963), 2766 | DOI | MR
[6] A. P. Yutsis, A. Bandzaitis, Teoriya momenta kolichestva dvizheniya v kvantovoi mekhanike, Vilnyus, 1965 | MR | Zbl