Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 353-366
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the Schrödinger equation on a half,axis with a potential $q(x)$ that is not absolutely integrable and may be unbounded at infinity. The main result of the paper is the proof of the existence and completeness of the wave operators $W_{\pm}(H,H_0)$ under the condition that the Fourier transform of the potential at the upper limit converges sufficiently fast everywhere except at a certain discrete set of points $k_j$. It is also proved that for such potentials eigenvalues in the continuous spectrum can appear only at the points $\lambda_j=k_j^2/4$.
@article{TMF_1973_15_3_a7,
author = {V. B. Matveev},
title = {Wave operators and positive eigenvalues for a {Schr\"odinger} equation with oscillating potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {353--366},
year = {1973},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a7/}
}
TY - JOUR AU - V. B. Matveev TI - Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 353 EP - 366 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a7/ LA - ru ID - TMF_1973_15_3_a7 ER -
V. B. Matveev. Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 3, pp. 353-366. http://geodesic.mathdoc.fr/item/TMF_1973_15_3_a7/
[1] V. B. Matveev, M. M. Skriganov, DAN SSSR, 202 (1972), 755 | MR | Zbl
[2] M. M. Skriganov, Tr. MIAN im. V. A. Steklova, 125 (1973), 000 | MR
[3] V. S. Buslaev, Vestn. LGU, ser. matem., 155 (1970) | Zbl
[4] A. L. Belopolskii, M. Sh. Birman, Izv. AN SSSR, ser. matem., 32 (1968), 1163 | MR
[5] M. Sh. Birman, Izv. AN SSSR, ser. matem., 32 (1968), 914 | MR | Zbl
[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, «Nauka», 1966 | MR | Zbl
[7] J. von Neumann, E. P. Wigner, Physik. Z., 50 (1929), 465–467
[8] T. Kato, Commun. Pure and Appl. Math., 12 (1959), 403 | DOI | MR | Zbl
[9] B. Simon, Commun. Pure and Appl. Math., 22 (1969), 531 | DOI | MR | Zbl