Asymptotically exact solutions for systems with singular potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 266-279
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that for quantum-mechanicaI systems with singular attractive potentials the Hartree approximation is realized exactly in the asymptotic limit of a large number $N$ of particles. The one-particle Hartree solutions are also asymptotically exact for systems with a bounded monotonic interaction potential.
@article{TMF_1973_15_2_a9,
author = {I. V. Simenog},
title = {Asymptotically exact solutions for systems with singular potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {266--279},
year = {1973},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a9/}
}
I. V. Simenog. Asymptotically exact solutions for systems with singular potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 266-279. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a9/
[1] M. E. Fisher, D. Ruelle, J. Math. Phys., 7 (1966), 260 | DOI | MR
[2] F. J. Dyson, J. Math. Phys., 8 (1967), 1538 | DOI | MR
[3] F. J. Dyson, A. Lenard, J. Math. Phys., 8 (1967), 423 | DOI | MR | Zbl
[4] A. Lenard, F. J. Dyson, J. Math. Phys., 9 (1968), 698 | DOI | MR | Zbl
[5] Jean-Marc Levy-Leblond, J. Math. Phys., 10 (1969), 806 | DOI
[6] I. V. Simenog, Phys. Letters, 40B (1972), 53 | DOI | MR
[7] I. V. Simenog, YaF, 10 (1969), 281
[8] R. P. Feynman, Phys. Rev., 94 (1954), 262 | DOI | Zbl
[9] I. V. Simenog, YaF, 1968 (7), 992