Adler's principle and algebraic duality
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 245-258
Voir la notice de l'article provenant de la source Math-Net.Ru
Adler's principle and the requirement of algebraic duality are discussed with relation to individual
terms of the expansion of the $n$-point dual amplitude with respect to homogeneous
functions of degree $r=1,2,\dots$ of the kinematic invariants $s_{ik}$. The fulfillment of Adler's
principle is ensured by the use of a phenomenological Lagrangian that is invariant under
the considered symmetry group and contains arbitrarily many derivatives of the meson
fields. It is shown that the requirement of algebraic duality leads to more or less strict
restrictions depending on the structure of the symmetry group.
@article{TMF_1973_15_2_a7,
author = {D. V. Volkov and V. D. Gershun and A. A. Zheltukhin and A. I. Pashnev},
title = {Adler's principle and algebraic duality},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--258},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a7/}
}
TY - JOUR AU - D. V. Volkov AU - V. D. Gershun AU - A. A. Zheltukhin AU - A. I. Pashnev TI - Adler's principle and algebraic duality JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 245 EP - 258 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a7/ LA - ru ID - TMF_1973_15_2_a7 ER -
D. V. Volkov; V. D. Gershun; A. A. Zheltukhin; A. I. Pashnev. Adler's principle and algebraic duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 245-258. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a7/