Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the results of [1] can be extended to the case of Weyl systems that are invariant
under the group of orthogonal transformations of the test-function space.
@article{TMF_1973_15_2_a4,
author = {E. V. Damaskinsky},
title = {Invariant {Weyl} systems that are not $U$-cyclic (note on {Hegerfeldt} and {Melsheimer's} paper)},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {221--226},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/}
}
TY - JOUR AU - E. V. Damaskinsky TI - Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper) JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 221 EP - 226 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/ LA - ru ID - TMF_1973_15_2_a4 ER -
E. V. Damaskinsky. Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper). Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/