Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the results of [1] can be extended to the case of Weyl systems that are invariant under the group of orthogonal transformations of the test-function space.
@article{TMF_1973_15_2_a4,
     author = {E. V. Damaskinsky},
     title = {Invariant {Weyl} systems that are not $U$-cyclic (note on {Hegerfeldt} and {Melsheimer's} paper)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--226},
     year = {1973},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
TI  - Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 221
EP  - 226
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/
LA  - ru
ID  - TMF_1973_15_2_a4
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%T Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 221-226
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/
%G ru
%F TMF_1973_15_2_a4
E. V. Damaskinsky. Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper). Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/

[1] G. C. Hegerfeldt, O. Melsheimer, Commun. Math. Phys., 12 (1969), 304 | DOI | MR | Zbl

[2] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4, Fizmatgiz, 1961 | MR

[3] H. Araki, J. Math. Phys., 1 (1960), 492 | DOI | MR | Zbl

[4] K. Maurin, General eigenfunction expansions and unitary representations of topological groups, Warsaw, 1968 | MR

[5] E. V. Damaskinskii, TMF, 15 (1973), 70 | MR

[6] H. Fukutome, Progr. Theor. Phys., 23 (1960), 989 | DOI | MR | Zbl

[7] M. A. Naimark, Normirovannye koltsa, 2-e izd., Fizmatgiz, 1968 | MR

[8] P. Khalmosh, Teoriya mery, IL, 1953 | MR

[9] A. I. Plesner, Spektralnaya teoriya lineinykh operatorov, gl. X, «Nauka», 1965 | MR | Zbl

[10] M. N. Stone, Linear transformations in Hilbert Space and their applications to analysis, Amer. Math. Soc. Coll. Publ., XV, N. Y., 1932 | MR | Zbl

[11] M. A. Naimark, S. V. Fomin, UMN, 10 (1955), 111 | MR | Zbl