Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the results of [1] can be extended to the case of Weyl systems that are invariant under the group of orthogonal transformations of the test-function space.
@article{TMF_1973_15_2_a4,
     author = {E. V. Damaskinsky},
     title = {Invariant {Weyl} systems that are not $U$-cyclic (note on {Hegerfeldt} and {Melsheimer's} paper)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--226},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
TI  - Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 221
EP  - 226
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/
LA  - ru
ID  - TMF_1973_15_2_a4
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%T Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 221-226
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/
%G ru
%F TMF_1973_15_2_a4
E. V. Damaskinsky. Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper). Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 221-226. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a4/