Renormalized scattering theory for Yukawa model II. Wave operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 207-220
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Yukawa model, the dressing operator $T_0(g,\sigma)$ is used to construct a space $\mathscr H_{\operatorname {ren}}$ which differs from the Fok space, in which the renormalized Hamiltonian $\Bar{H}_{\operatorname {ren}}(1,\sigma)$ with removed space cutoff but fixed parameter of the ultraviolet cutoff is a self-adjoint operator. The existence of renormalized operators is proved for the pair of operators $H_0$ and $\Bar{H}_{\operatorname {ren}}(1,\sigma)$.
@article{TMF_1973_15_2_a3,
author = {I. Ya. Aref'eva},
title = {Renormalized scattering theory for {Yukawa} {model~II.} {Wave} operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {207--220},
year = {1973},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/}
}
I. Ya. Aref'eva. Renormalized scattering theory for Yukawa model II. Wave operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/
[1] I. Ya. Arefeva, TMF, 14 (1973), 3 | MR
[2] J. Glimm, Commun. Math. Phys., 10 (1968), 1 | DOI | MR | Zbl
[3] K. Hepp, Theorie de la renormalisation, Springer-Verlag, 1969 | MR | Zbl
[4] I. V. Volovich, V. N. Sushko, TMF, 9 (1972), 211
[5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966 | MR