Renormalized scattering theory for Yukawa model II. Wave operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 207-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Yukawa model, the dressing operator $T_0(g,\sigma)$ is used to construct a space $\mathscr H_{\operatorname {ren}}$ which differs from the Fok space, in which the renormalized Hamiltonian $\Bar{H}_{\operatorname {ren}}(1,\sigma)$ with removed space cutoff but fixed parameter of the ultraviolet cutoff is a self-adjoint operator. The existence of renormalized operators is proved for the pair of operators $H_0$ and $\Bar{H}_{\operatorname {ren}}(1,\sigma)$.
@article{TMF_1973_15_2_a3,
     author = {I. Ya. Aref'eva},
     title = {Renormalized scattering theory for {Yukawa} {model~II.} {Wave} operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--220},
     year = {1973},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
TI  - Renormalized scattering theory for Yukawa model II. Wave operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 207
EP  - 220
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/
LA  - ru
ID  - TMF_1973_15_2_a3
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%T Renormalized scattering theory for Yukawa model II. Wave operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 207-220
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/
%G ru
%F TMF_1973_15_2_a3
I. Ya. Aref'eva. Renormalized scattering theory for Yukawa model II. Wave operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 2, pp. 207-220. http://geodesic.mathdoc.fr/item/TMF_1973_15_2_a3/

[1] I. Ya. Arefeva, TMF, 14 (1973), 3 | MR

[2] J. Glimm, Commun. Math. Phys., 10 (1968), 1 | DOI | MR | Zbl

[3] K. Hepp, Theorie de la renormalisation, Springer-Verlag, 1969 | MR | Zbl

[4] I. V. Volovich, V. N. Sushko, TMF, 9 (1972), 211

[5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966 | MR