Projection operators for simple lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 107-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of many problems of nuclear theory reduces to projecting wave functions $\psi$ that are not eigenfunctions of the integrals of motion $\Lambda$ onto the eigenfunetion space of these operators $\Lambda$. For this projection one requires projection operators for the groups $SU(n)$, $SO(n)$, and other simple Lie groups. In the present paper a general scheme is proposed, for an arbitrary simple Lie group $G(l)$ of rank $l$, for constructing raising and lowering operators $\mathscr F_{+}$ and $\mathscr F_{-}$, which, together with the previously obtained operators $P^{[f]}$, form cornplete projection operators for the given group. We are concerned with bases of irreducible representations of $G(l)$ which are such that they correspond to restriction to a chain of regularly imbedded subgroups $G(l)\supset G(g)\supset\dots\supset G(s)\supset\dots\supset G(t)$. As an example of a concrete realization of the scheme the lowering operators $\mathscr F_{-}$ are obtained for the canonical Gel'fand–Tseitlin basis for the group $U(n)$. The matrix elements of the generators of the group $U(n)$ are obtained in this basis.
@article{TMF_1973_15_1_a8,
     author = {R. M. Asherova and Yu. F. Smirnov and V. N. Tolstoy},
     title = {Projection operators for simple lie groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {107--119},
     year = {1973},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a8/}
}
TY  - JOUR
AU  - R. M. Asherova
AU  - Yu. F. Smirnov
AU  - V. N. Tolstoy
TI  - Projection operators for simple lie groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 107
EP  - 119
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a8/
LA  - ru
ID  - TMF_1973_15_1_a8
ER  - 
%0 Journal Article
%A R. M. Asherova
%A Yu. F. Smirnov
%A V. N. Tolstoy
%T Projection operators for simple lie groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 107-119
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a8/
%G ru
%F TMF_1973_15_1_a8
R. M. Asherova; Yu. F. Smirnov; V. N. Tolstoy. Projection operators for simple lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a8/

[1] M. Bouten, P. Van Leuven, H. De Puydt, Nucl. Phys., A94 (1967), 687 | DOI

[2] J. P. Elliott, Proc. Roy. Soc., A245, 128; (1958), 562 | DOI | Zbl

[3] D. M. Brink, A. Weiguni, Nucl. Phys., A120 (1968), 59 | DOI

[4] P. Giraud, D. Zaikin, Nucl. Phys., A102 (1967), 11

[5] T. Sebe, F. Khanna, M. Harvey, Nucl. Phys., A130 (1969), 342 | DOI

[6] K. Dietrich, H. J. Mang, J. Pradal, Phys. Rev., B135 (1964), 22 | DOI | MR

[7] J. Fujita, K. Ikeda, Progr. Theor. Phys., 35 (1966), 622 ; 38 (1968), 107 | DOI | DOI

[8] N. Mac Donald, Adv. Phys., 19 (1970), 371 | DOI

[9] B. F. Bayman, A. Lande, Nucl. Phys., 77 (1966), 1 | DOI

[10] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, TMF, 8 (1971), 255 ; Р. М. Ашерова, Ю. Ф. Смирнов, УМН, 24 (1969), 227 | MR | Zbl | MR | Zbl

[11] R. M. Asherova, Yu. F. Smirnov, Nucl. Phys., B4 (1968), 399 | DOI

[12] R. M. Asherova, Yu. F. Smirnov, Nucl. Phys., A144 (1970), 116 | DOI

[13] Yu. F. Smirnov, V. N. Tolstoi, Rept. Math. Phys., 4 (1973), 105 | DOI | MR

[14] D. T. Sviridov, Yu. F. Smirnov, V. N. Tolstoi, DAN SSSR, 206 (1972), 53 | MR

[15] I. M. Gelfand, M. L. Tseitlin, DAN SSSR, 71 (1950), 825 | Zbl

[16] D. P. Zhelobenko, DAN SSSR, 139 (1961), 1291 ; УМН, 17 (1962), 27 ; Компактные группы Ли и их представления, «Наука», 1970 | MR | Zbl

[17] I. M. Gelfand, I. I. Graev, Izv. AN SSSR, ser. matem., 29 (1965), 1329 | Zbl

[18] J. G. Nagel, M. Moshinsky, J. Math. Phys., 6 (1965), 682 ; Rev. Phys. Mex., 14 (1965), 29 ; How Pei-Yu, Scientia Sinica, 15 (1966), 763 | DOI | MR | Zbl | MR | MR

[19] G. E. Baird, L. C. Biedenharn, J. Math. Phys., 4 (1963), 1449 | DOI | MR