Renormalization of the $SU_3\otimes SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ward identities are deduced for divergent Green's functions in the framework of the $SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking. The model is renormalized. A diagrammatic technique is obtained for the renormalized perturbation series and the propagators and vertices are constructed in the one-loop approximation. Equations are also obtained for the tadpole contributions and the stability conditions are analyzed. The validity of the Goldstone theorem in the one-loop approximation is verified.
@article{TMF_1973_15_1_a5,
     author = {A. A. Khelashvili and V. Yu. Khmaladze},
     title = {Renormalization of the $SU_3\otimes SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--90},
     year = {1973},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a5/}
}
TY  - JOUR
AU  - A. A. Khelashvili
AU  - V. Yu. Khmaladze
TI  - Renormalization of the $SU_3\otimes SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 78
EP  - 90
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a5/
LA  - ru
ID  - TMF_1973_15_1_a5
ER  - 
%0 Journal Article
%A A. A. Khelashvili
%A V. Yu. Khmaladze
%T Renormalization of the $SU_3\otimes SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 78-90
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a5/
%G ru
%F TMF_1973_15_1_a5
A. A. Khelashvili; V. Yu. Khmaladze. Renormalization of the $SU_3\otimes SU_3$-$\sigma$-model for $0^{\pm}$-mesons with linear breaking. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a5/

[1] S. Adler, R. Dashen, Algebry tokov i ikh primenenie v fizike chastits, «Mir», 1970 | MR

[2] S. Gasiorowicz, D. A. Geffen, Rev. Mod. Phys., 41 (1969), 531 | DOI | MR

[3] J. L. Basdevant, B. W. Lee, Phys. Rev., D2 (1970), 1680

[4] B. W. Lee, Nucl. Phys., B9 (1969), 649 | DOI

[5] J. L. Gervais, B. W. Lee, Nucl. Phys., B12 (1969), 627 | DOI

[6] J. A. Mignaco, E. Remiddi, Nuovo Cim., 1A (1971), 376 | DOI

[7] J. A. Mignaco, E. Remiddi, Nuovo Cim., 1A (1971), 395 | DOI

[8] M. Levy, Nuovo Cim., 52 (1967), 23 | DOI

[9] H. W. Crater, Phys. Rev., D1 (1970), 3313

[10] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR

[11] K. Symanzik, Commun. Math. Phys., 16 (1970), 48 | DOI | MR

[12] D. Bessis, G. Turchetti, Saclay Preprint, DPh-T/70/70, 1970

[13] A. A. Slavnov, Preprint ITP-71-83 E, Kiev, 1971

[14] B. W. Lee, J. Zinn-Justin, Spontaneously Broken Gauge Symmetries. I, II, III, Preprints, NAL, New York, 1972

[15] G.'t Hooft, Nucl. Phys., B33 (1971), 173 ; M. Veltman, Nucl. Phys., B21 (1970), 282 | DOI

[16] S. Adler, Phys. Rev., 177 (1969), 2426 | DOI

[17] S. Adler, Phys. Rev., 139B (1965), 1638 | DOI

[18] J. Goldstone, Nuovo Cim., 19 (1961), 154 | DOI | MR | Zbl