$O$-invariant $U$-cyclic Weyl systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 70-77
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of $U$-cyclic Weyl systems that are invariant under the group of all unitary operators of the test-function space. It is shown that the class of vacuum Weyl systems is exhausted by Weyl systems generated by Gaussian measures.
@article{TMF_1973_15_1_a4,
     author = {E. V. Damaskinsky},
     title = {$O$-invariant $U$-cyclic {Weyl} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--77},
     year = {1973},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
TI  - $O$-invariant $U$-cyclic Weyl systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 70
EP  - 77
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/
LA  - ru
ID  - TMF_1973_15_1_a4
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%T $O$-invariant $U$-cyclic Weyl systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 70-77
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/
%G ru
%F TMF_1973_15_1_a4
E. V. Damaskinsky. $O$-invariant $U$-cyclic Weyl systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 70-77. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/

[1] G. Barton, Dispersionnye metody v teorii polya, Atomizdat, 1968

[2] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Fizmatgiz, 1969 | MR

[3] A. Vaitman, Problemy v relyativistskoi dinamike kvantovannykh polei, «Nauka», 1968

[4] I. Sigal, Matematicheskie problemy relyativistskoi fiziki, «Mir», 1968 | MR

[5] N. M. Gugengolts, Kvantovaya teoriya sistem mnogikh tel, «Mir», 1967

[6] D. Ryuel, Statisticheskaya mekhanika, strogie rezultaty, «Mir», 1971

[7] O. I. Zavyalov, V. N. Sushko, TMF, 1 (1969), 153

[8] H. Araki, Commun. Math. Phys., 20 (1971), 9 | DOI | MR | Zbl

[9] Ole A. Nielsen, Commun. Math. Phys., 22 (1971), 23 | DOI | MR

[10] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4, Fizmatgiz, 1961 | MR

[11] H. Araki, J. Math. Phys., 1 (1960), 492 | DOI | MR | Zbl

[12] K. Maurin, General eigenfunction expansions of unitari representations of topological groups, Warsaw, 1968 | MR

[13] J. Lew, Thesis, Princeton Univ., 1960

[14] H. Fukutome, Progr. Theor. Phys., 23 (1960), 989 | DOI | MR | Zbl

[15] I. E. Segal, Illinois, J. Math., 6 (1962), 500 | MR | Zbl

[16] H. Umemura, Publ. of the RIMS, 1 (1965), 1 | DOI | MR | Zbl

[17] H. Araki, E. J. Woods, J. Math. Phys., 4 (1963), 637 | DOI | MR

[18] E. J. Woods, Commun. Math. Phys., 17 (1970), 1 | DOI | MR | Zbl

[19] G. C. Hegerfeldt, J. Klauder, Commun. Math. Phys., 16 (1970), 329 | DOI | MR | Zbl

[20] G. C. Hegerfeldt, Nuovo Cim., 4 (1971), 225 | DOI | MR

[21] P. Khalmosh, Teoriya mery, IL, 1953 | MR

[22] M. Weinless, J. Funct. Analysis, 4 (1969), 350 | DOI | MR | Zbl

[23] L. Gross, J. Funct. Analysis, 10 (1972), 52 | DOI | MR | Zbl

[24] F. A. Berezin, Metod vtorichnogo kvantovaniya, Fizmatgiz, 1965 | MR | Zbl

[25] A. A. Grib, E. V. Damaskinskii, V. M. Maksimov, UFN, 102 (1970), 587 | DOI

[26] J. M. Chaiken, Ann. Phys., 42 (1967), 23 | DOI | MR | Zbl

[27] J. M. Chaiken, Commun. Math. Phys., 8 (1968), 164 | DOI | MR | Zbl