$O$-invariant $U$-cyclic Weyl systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 70-77

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of $U$-cyclic Weyl systems that are invariant under the group of all unitary operators of the test-function space. It is shown that the class of vacuum Weyl systems is exhausted by Weyl systems generated by Gaussian measures.
@article{TMF_1973_15_1_a4,
     author = {E. V. Damaskinsky},
     title = {$O$-invariant $U$-cyclic {Weyl} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--77},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
TI  - $O$-invariant $U$-cyclic Weyl systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 70
EP  - 77
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/
LA  - ru
ID  - TMF_1973_15_1_a4
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%T $O$-invariant $U$-cyclic Weyl systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 70-77
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/
%G ru
%F TMF_1973_15_1_a4
E. V. Damaskinsky. $O$-invariant $U$-cyclic Weyl systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 70-77. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a4/