Convexity properties of Legendre transformations (variational methods in quantum field theory)
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 43-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that in scalar field theory Legendre transforms are convex functionals in
variables that have the meaning of unconnected Green's functions. It follows, in particular,
that a stationarity point of these functionals in an extremum.
			
            
            
            
          
        
      @article{TMF_1973_15_1_a2,
     author = {A. N. Vasil'ev and A. K. Kazanskii},
     title = {Convexity properties of {Legendre} transformations (variational methods in quantum field theory)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {43--58},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/}
}
                      
                      
                    TY - JOUR AU - A. N. Vasil'ev AU - A. K. Kazanskii TI - Convexity properties of Legendre transformations (variational methods in quantum field theory) JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 43 EP - 58 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/ LA - ru ID - TMF_1973_15_1_a2 ER -
%0 Journal Article %A A. N. Vasil'ev %A A. K. Kazanskii %T Convexity properties of Legendre transformations (variational methods in quantum field theory) %J Teoretičeskaâ i matematičeskaâ fizika %D 1973 %P 43-58 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/ %G ru %F TMF_1973_15_1_a2
A. N. Vasil'ev; A. K. Kazanskii. Convexity properties of Legendre transformations (variational methods in quantum field theory). Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 43-58. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/
