Convexity properties of Legendre transformations (variational methods in quantum field theory)
Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 43-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in scalar field theory Legendre transforms are convex functionals in variables that have the meaning of unconnected Green's functions. It follows, in particular, that a stationarity point of these functionals in an extremum.
@article{TMF_1973_15_1_a2,
     author = {A. N. Vasil'ev and A. K. Kazanskii},
     title = {Convexity properties of {Legendre} transformations (variational methods in quantum field theory)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {43--58},
     year = {1973},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - A. K. Kazanskii
TI  - Convexity properties of Legendre transformations (variational methods in quantum field theory)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 43
EP  - 58
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/
LA  - ru
ID  - TMF_1973_15_1_a2
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A A. K. Kazanskii
%T Convexity properties of Legendre transformations (variational methods in quantum field theory)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 43-58
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/
%G ru
%F TMF_1973_15_1_a2
A. N. Vasil'ev; A. K. Kazanskii. Convexity properties of Legendre transformations (variational methods in quantum field theory). Teoretičeskaâ i matematičeskaâ fizika, Tome 15 (1973) no. 1, pp. 43-58. http://geodesic.mathdoc.fr/item/TMF_1973_15_1_a2/

[1] C. de Dominicis, P. C. Martin, J. Math. Phys., 5 (1964), 14 | DOI | MR

[2] C. de Dominicis, J. Math. Phys., 3 (1962), 983 | DOI

[3] G. Jona-Lasinio, Nuovo Cim., 34 (1964), 1790 | DOI

[4] G. Jona-Lasinio, Acta Phys. Hung., 19 (1965), 139 | DOI

[5] H. D. Dahmen, G. Jona-Lasinio, Nuovo Cim., 52A (1967), 807 | DOI

[6] H. D. Dahmen, G. Jona-Lasinio, Nuovo Cim., 62A (1969), 889 | DOI

[7] T. D. Lee, C. N. Yang, Phys. Rev., 113 (1959), 1165 ; 117 (1960), 22 | DOI | MR | Zbl | DOI | MR | Zbl

[8] J. Luttinger, J. Ward, Phys. Rev., 118 (1960), 1417 | DOI | MR | Zbl

[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR

[10] R. P. Feynman, Rev. Mod. Phys., 20 (1847), 376 | MR

[11] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu, IL, 1963

[12] K. Symanzik, Commun. Math. Phys., 16 (1970), 48 | DOI | MR

[13] K. Symanzik, Rendiconti della scuolla Internasionalle di Fizica “Enrico Fermi” (Varenna, 1968), Acad. Press., 1969

[14] J. Schwinger, Proc. Nath. Acad. Sci., 44 (1958), 956 | DOI | MR | Zbl

[15] D. Ruelle, Nuovo Cim., 19 (1961), 356 | DOI | MR | Zbl

[16] K. Symanzik, J. Math. Phys., 7 (1966), 510 | DOI | MR

[17] E. S. Fradkin, Dissertatsiya, Tr. FIAN, 29 (1965)

[18] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, 1961 | MR

[19] Th. A. Maris, Lett. Nuovo Cim., 2 (1969), 821 | DOI

[20] N. M. Gugengolts, Kvantovaya teoriya sistem mnogikh tel, «Mir», 1967

[21] J. Schwinger, Proc. Nath. Acad. Sci., 37 (1951), 452 | DOI | MR | Zbl

[22] C. Bloch, Studies in Statisticarmechanics, v. III, 1965 | MR | Zbl

[23] A. N. Vasilev, A. K. Kazanskii, TMF, 12 (1972), 352 | MR

[24] A. N. Vasilev, A. K. Kazanskii, TMF, 14 (1973), 289 | MR