Equations of motion for the parameters of a weakly nonequilibrium system
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 381-387
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonequilibrium statistical operator method is used to show that in general form equations
of motion for the parameters of a weakly nonequilibrium system can be expressed in terms of
their equilibrium retarded Green's functions. The characteristic frequencies and spectrum of
relaxation times are determined by the poles of these functions. The relationship between
these equations and the analogous equations in the Mort scheme is established.
@article{TMF_1973_14_3_a8,
author = {V. N. Kitaev and L. V. Kurbatov},
title = {Equations of motion for the parameters of a weakly nonequilibrium system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {381--387},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a8/}
}
TY - JOUR AU - V. N. Kitaev AU - L. V. Kurbatov TI - Equations of motion for the parameters of a weakly nonequilibrium system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 381 EP - 387 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a8/ LA - ru ID - TMF_1973_14_3_a8 ER -
V. N. Kitaev; L. V. Kurbatov. Equations of motion for the parameters of a weakly nonequilibrium system. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 381-387. http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a8/