A complete set of quantum-mechanical observables on a two-dimensional sphere
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 366-380

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the problem of diagonal operators on a two-dimensional sphere. A trigonometrie form of an elliptic system of coordinates on a sphere that is convenient for applications in physics is derived. Wave eigenfunctions of diagonal operators in the elliptic coordinate system – so-called spheroconieal functions – are constructed. Their main properties are derived. Conditions that determine the eigenvalues of the second diagonal operator in the elliptic coordinate system are found. Some matrix elements of spheroconicM functions are calculated. Possible applications in physics are discussed for the complete set of quantum-mechanical observables associated with the elliptic coordinate system on the twodimensional sphere.
@article{TMF_1973_14_3_a7,
     author = {I. Lukach},
     title = {A complete set of quantum-mechanical observables on a two-dimensional sphere},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {366--380},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a7/}
}
TY  - JOUR
AU  - I. Lukach
TI  - A complete set of quantum-mechanical observables on a two-dimensional sphere
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 366
EP  - 380
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a7/
LA  - ru
ID  - TMF_1973_14_3_a7
ER  - 
%0 Journal Article
%A I. Lukach
%T A complete set of quantum-mechanical observables on a two-dimensional sphere
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 366-380
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a7/
%G ru
%F TMF_1973_14_3_a7
I. Lukach. A complete set of quantum-mechanical observables on a two-dimensional sphere. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 366-380. http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a7/