System of equations for the vertex functions of the $T$-exponential function
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 342-356
Voir la notice de l'article provenant de la source Math-Net.Ru
An operator-valued functional of the “cutoff parameters” is constructed; after a certain formal
passage to the limit this goes over into the renormaltzed perturbation series for the $S$-matrix of a scalar field with the interactions$\lambda\,{:}\varphi^3{:}$, $\lambda\,{:}\varphi^4{:}$. The characteristic equation obtained
for it enables one to construct a system of equations that do not contain ultraviolet divergences
for the vertex functions of the $\Sigma_n$ contributions from all strongly connected diagrams
with $n$ external lines.
@article{TMF_1973_14_3_a5,
author = {V. A. Shcherbina},
title = {System of equations for the vertex functions of the $T$-exponential function},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {342--356},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a5/}
}
TY - JOUR AU - V. A. Shcherbina TI - System of equations for the vertex functions of the $T$-exponential function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 342 EP - 356 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a5/ LA - ru ID - TMF_1973_14_3_a5 ER -
V. A. Shcherbina. System of equations for the vertex functions of the $T$-exponential function. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 342-356. http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a5/