Von neumann algebras of observables with non-Abelian commutator algebra and superselection rules
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 306-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of representations of the algebra of observables in $\mathscr H$ which are such that every vector functional can be weakly approximated by finite e linear combinations of pure states. It is proved that this assumption is equivalent to $\mathscr H$ being the closure of the linear hull of the set of vectors that represent pure states. A general definition is introduced for superselectton rules and it is shown that the set of superseleetion operators eoineides with the set of selfadjoint operators adjoined to the center of the yon Neurnann algebra of observables. A number of properties of coherent subspaees is established.
@article{TMF_1973_14_3_a1,
     author = {S. G. Kharatyan},
     title = {Von neumann algebras of observables with {non-Abelian} commutator algebra and superselection rules},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {306--313},
     year = {1973},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a1/}
}
TY  - JOUR
AU  - S. G. Kharatyan
TI  - Von neumann algebras of observables with non-Abelian commutator algebra and superselection rules
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 306
EP  - 313
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a1/
LA  - ru
ID  - TMF_1973_14_3_a1
ER  - 
%0 Journal Article
%A S. G. Kharatyan
%T Von neumann algebras of observables with non-Abelian commutator algebra and superselection rules
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 306-313
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a1/
%G ru
%F TMF_1973_14_3_a1
S. G. Kharatyan. Von neumann algebras of observables with non-Abelian commutator algebra and superselection rules. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 3, pp. 306-313. http://geodesic.mathdoc.fr/item/TMF_1973_14_3_a1/

[1] R. Haag, S. Doplicher, E. Roberts, Commun. Math. Phys., 13 (1969), 1 | DOI | MR | Zbl

[2] R. Haag, S. Doplicher, E. Roberts, Commun. Math. Phys., 15 (1970), 173 | MR

[3] V. N. Sushko, S. S. Khoruzhii, TMF, 4 (1971), 171

[4] V. N. Sushko, S. S. Khoruzhii, TMF, 4 (1971), 341

[5] I. Sigal, Matematicheskie problemy relyativistskoi fiziki, «Mir», 1967 | MR

[6] I. E. Segal, Ann. Math., 48 (1947), 73 | DOI | MR

[7] R. Haag, D. Kastler, J. Math. Phys., 5 (1964), 848 | DOI | MR | Zbl

[8] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, «Nauka», 1964 | MR

[9] G. G. Wick, E. P. Wigner, A. S. Wightman, Phys. Rev., 88 (1952), 101 | DOI | MR | Zbl

[10] J. M. Jauch, B. Misra, Helv. Phys. Acta, 33 (1960), 711 | MR | Zbl

[11] J. M. Jauch, B. Misra, Helv. Phys. Acta, 34 (1961), 699 | MR | Zbl

[12] A. S. Wightman, Les problemes mathematiques de la theorie quantique des champs, Centre National de la Resherche Scientifique, 1959 | MR | Zbl

[13] S. G. Kharatyan, DAN SSSR, 180 (1968), 564 | Zbl

[14] S. G. Kharatian, A. I. Oksak, Preprint E-2-3799, JINR, 1968 | MR

[15] S. G. Kharatyan, YaF, 9 (1969), 1305 | MR

[16] M. A. Naimark, Normirovannye koltsa, «Nauka», 1968 | MR | Zbl

[17] G. G. Fell, Trans. Amer. Math. Soc., 94 (1960), 365 | DOI | MR | Zbl

[18] M. M. Dei, Lineinye normirovannye prostranstva, «Mir», 1961 | MR