Application of the method of double-time Green's functions in the theory of migration
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 235-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of double-time Green's functions [1] is used to study the migration of vacancies in a one-dimensional lattice with allowance for deformation effects. A study is made of multiple phonon scattering on vacancies, and an equation for the corresponding transition matrix is constructed on the basis of the chain of equations for the Green's functions. For the diffusion coefficient an expression is obtained that allows for the rearrangement of the lattice vibrations due to the motion of a vacancy.
@article{TMF_1973_14_2_a8,
     author = {Yu. A. Kashlev},
     title = {Application of the method of double-time {Green's} functions in the theory of migration},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {235--250},
     year = {1973},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a8/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Application of the method of double-time Green's functions in the theory of migration
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 235
EP  - 250
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a8/
LA  - ru
ID  - TMF_1973_14_2_a8
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Application of the method of double-time Green's functions in the theory of migration
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 235-250
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a8/
%G ru
%F TMF_1973_14_2_a8
Yu. A. Kashlev. Application of the method of double-time Green's functions in the theory of migration. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 235-250. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a8/

[1] D. N. Zubarev, UFN, 71 (1960), 71 | DOI | MR

[2] C. P. Flynn, Phys. Rev., 171 (1968), 682 | DOI

[3] J. A. Sussman, J. Phys. Chem. Solids, 28 (1967), 1643 | DOI

[4] H. R. Glyde, Rev. Mod. Phys., 39 (1967), 373 | DOI

[5] S. A. Rice, Phys. Rev., 112 (1958), 804 | DOI | MR

[6] G. H. Vineyard, J. Phys. Chem. Solids, 3 (1967), 121 | DOI

[7] S. Gleston, K. Leidler, G. Eiring, Teoriya absolyutnykh skorostei khimicheskikh reaktsii, IL, 1948

[8] I. Prigogine, T. A. Bak, J. Chem. Phys., 31 (1959), 1368 | DOI | MR

[9] T. Geszti, Phys. Status Solidi, 20 (1967), 165 | DOI

[10] J. H. Weiner, W. F. Adler, Phys. Rev., 144 (1966), 511 | DOI

[11] G. F. Nardelli, L. Reatto, Physica, 31 (1965), 541 | DOI | MR

[12] Ya. I. Frenkel, T. A. Kontorova, ZhETF, 8 (1938), 89

[13] P. Gosar, Nuovo Cim., 31 (1964), 781 | DOI

[14] S. Nakajima, Progr. Theor. Phys., 20 (1958), 948 | DOI | MR | Zbl

[15] B. Deo, S. N. Behera, Phys. Rev., 141 (1966), 738 | DOI | MR

[16] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika, «Mir», 1964, str. 152, 220

[17] K. Yamada, Progr. Theor. Phys., 28 (1962), 299 | DOI | MR | Zbl

[18] J. M. Luttinger, W. Kohn, Phys. Rev., 109 (1958), 1892 | DOI | MR

[19] K. H. Michel, Physica, 30 (1964), 2194 | DOI | MR | Zbl

[20] I. G. Lang, Yu. A. Firsov, ZhETF, 43 (1962), 1843 | Zbl

[21] T. Holstein, Ann. Phys., 8 (1959), 325 | DOI | Zbl

[22] C. P. Flynn, A. M. Stoneham, Phys. Rev., B1 (1970), 3966 | DOI

[23] G. Schottky, Phys. Status Solidi, 8 (1965), 357 | DOI

[24] K. Thoma, W. Ludwig, Phys. Status Solidi, 8 (1965), 487 | DOI

[25] A. A. Maradudin, Astrophysics and Many Body Problem, ed. K. W. Ford, W. A. Benjamin, Inc., New York, 1963, 107 | MR

[26] J. A. Mc Lennan, Progr. Theor. Phys., 30 (1963), 4086

[27] G. P. De Vault, James A. Mc. Lennan, Phys. Rev., 138 (1965), A856 | DOI

[28] V. Gallina, M. Omini, Phys. Status Solidi, 6 (1964), 391 | DOI

[29] A. S. Davydov, Teoriya molekulyarnykh eksitonov, «Nauka», 1968, str. 115 | MR | Zbl