On the existence and continuity of the pressure in quantum statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in the case of all three statistics (Maxwell–Boltzmann; Bose–Einstein, and Fermi–Dirac) the pressure in the canonical ensemble is a continuous function that satisfies a Lipschitz condition provided the pair interaction potential $\Phi(r)$ for $r\eqslantgtr a$ ($a\eqslantgtr0$ is the hardcore radius) is a twice continuously differentiable function. Apart from the usual conditions needed to ensure the existence of the thermodynamic limit, this function satisfies for some $\varepsilon>0$ the further inequality $$ \tilde U_N(x_1,x_2,\dots,x_N)=\sum_{i<j}\tilde{\Phi}(|x_i-x_j|)\eqslantgtr-\tilde BN,\quad\tilde B\eqslantgtr0, $$ where $\tilde{\Phi}(r)=\Phi(r)+\varepsilon(2r\Phi'(r)-r^2\Phi''(r)).$ Some sufficient conditions to be imposed on $\Phi(r)$ for this inequality to hold are given.
@article{TMF_1973_14_2_a6,
     author = {L. A. Pastur},
     title = {On the existence and continuity of the pressure in quantum statistical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--219},
     year = {1973},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/}
}
TY  - JOUR
AU  - L. A. Pastur
TI  - On the existence and continuity of the pressure in quantum statistical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 211
EP  - 219
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/
LA  - ru
ID  - TMF_1973_14_2_a6
ER  - 
%0 Journal Article
%A L. A. Pastur
%T On the existence and continuity of the pressure in quantum statistical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 211-219
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/
%G ru
%F TMF_1973_14_2_a6
L. A. Pastur. On the existence and continuity of the pressure in quantum statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/

[1] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971

[2] R. L. Dobrushin, R. A. Minlos, Teoriya veroyatnostei i ee primeneniya, 12 (1967), 595 | MR

[3] D. Ruelle, Commun. Math. Phys., 18 (1970), 127 | DOI | MR | Zbl

[4] J. Ginibre, Phys. Rev. Lett., 24 (1970), 1472 | DOI | MR

[5] J. Van der Linden, Physica, 38 (1968), 173 | DOI

[6] R. L. Dobrushin, Teoriya veroyatnostei i ee primeneniya, 9 (1964), 626 | Zbl

[7] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, «Nauka», 1970 | MR | Zbl