On the existence and continuity of the pressure in quantum statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that in the case of all three statistics (Maxwell–Boltzmann; Bose–Einstein, and Fermi–Dirac) the pressure in the canonical ensemble is a continuous function that satisfies a Lipschitz condition provided the pair interaction potential $\Phi(r)$ for $r\eqslantgtr a$ ($a\eqslantgtr0$ is the hardcore radius) is a twice continuously differentiable function. Apart from the usual conditions needed to ensure the existence of the thermodynamic limit, this function satisfies for some $\varepsilon>0$ the further inequality $$ \tilde U_N(x_1,x_2,\dots,x_N)=\sum_{i<j}\tilde{\Phi}(|x_i-x_j|)\eqslantgtr-\tilde BN,\quad\tilde B\eqslantgtr0, $$ where $\tilde{\Phi}(r)=\Phi(r)+\varepsilon(2r\Phi'(r)-r^2\Phi''(r)).$ Some sufficient conditions to be imposed on $\Phi(r)$ for this inequality to hold are given.
@article{TMF_1973_14_2_a6,
author = {L. A. Pastur},
title = {On the existence and continuity of the pressure in quantum statistical mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {211--219},
year = {1973},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/}
}
L. A. Pastur. On the existence and continuity of the pressure in quantum statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/
[1] D. Ryuel, Statisticheskaya mekhanika, «Mir», 1971
[2] R. L. Dobrushin, R. A. Minlos, Teoriya veroyatnostei i ee primeneniya, 12 (1967), 595 | MR
[3] D. Ruelle, Commun. Math. Phys., 18 (1970), 127 | DOI | MR | Zbl
[4] J. Ginibre, Phys. Rev. Lett., 24 (1970), 1472 | DOI | MR
[5] J. Van der Linden, Physica, 38 (1968), 173 | DOI
[6] R. L. Dobrushin, Teoriya veroyatnostei i ee primeneniya, 9 (1964), 626 | Zbl
[7] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, «Nauka», 1970 | MR | Zbl