On the existence and continuity of the pressure in quantum statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that in the case of all three statistics (Maxwell–Boltzmann; Bose–Einstein, and
Fermi–Dirac) the pressure in the canonical ensemble is a continuous function that satisfies
a Lipschitz condition provided the pair interaction potential $\Phi(r)$ for $r\eqslantgtr a$ ($a\eqslantgtr0$ is the hardcore
radius) is a twice continuously differentiable function. Apart from the usual conditions
needed to ensure the existence of the thermodynamic limit, this function satisfies for some
$\varepsilon>0$ the further inequality
$$
\tilde U_N(x_1,x_2,\dots,x_N)=\sum_{i}\tilde{\Phi}(|x_i-x_j|)\eqslantgtr-\tilde BN,\quad\tilde B\eqslantgtr0,
$$
where $\tilde{\Phi}(r)=\Phi(r)+\varepsilon(2r\Phi'(r)-r^2\Phi''(r)).$ Some sufficient conditions to be imposed on $\Phi(r)$
for this inequality to hold are given.
@article{TMF_1973_14_2_a6,
author = {L. A. Pastur},
title = {On the existence and continuity of the pressure in quantum statistical mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {211--219},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/}
}
TY - JOUR AU - L. A. Pastur TI - On the existence and continuity of the pressure in quantum statistical mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1973 SP - 211 EP - 219 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/ LA - ru ID - TMF_1973_14_2_a6 ER -
L. A. Pastur. On the existence and continuity of the pressure in quantum statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a6/