Electron in the field of a plane quantized electromagnetic wave
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 202-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Wave functions are found for a system consisting of a charge plus the second-quantized electromagnetic field of a plane wave. The plane wave is represented by an expansion with respect to photons with definite momentum and polarization. The interaction between the electron and all the photons of the wave is allowed for exactly. The problem is solved by the method of canonical transformations of creation and annihilation operators without explicit specification of the form of these operators. The properties of the solutions are studied and their relation to the Volkov solutions is found.
@article{TMF_1973_14_2_a5,
     author = {V. G. Bagrov and P. V. Bozrikov and D. M. Gitman},
     title = {Electron in the field of a plane quantized electromagnetic wave},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {202--210},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a5/}
}
TY  - JOUR
AU  - V. G. Bagrov
AU  - P. V. Bozrikov
AU  - D. M. Gitman
TI  - Electron in the field of a plane quantized electromagnetic wave
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 202
EP  - 210
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a5/
LA  - ru
ID  - TMF_1973_14_2_a5
ER  - 
%0 Journal Article
%A V. G. Bagrov
%A P. V. Bozrikov
%A D. M. Gitman
%T Electron in the field of a plane quantized electromagnetic wave
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 202-210
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a5/
%G ru
%F TMF_1973_14_2_a5
V. G. Bagrov; P. V. Bozrikov; D. M. Gitman. Electron in the field of a plane quantized electromagnetic wave. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 202-210. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a5/