Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 170-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the separation of variables in a spheroconical coordinate system associated with the existence of an elliptic coordinate system on a three-dimensional sphere. In the class of admissible potentials, interest attaches to a potential of the form $qr^{-4}[3(\boldsymbol\alpha\mathbf r) (\boldsymbol\beta\mathbf r)-(\boldsymbol{\alpha\beta})\mathbf r^2]$, where $\boldsymbol\alpha$ and $\boldsymbol\beta$ are two arbitrary unit vectors. The angular part of this potential has the form of a noncentral interaction similar to the angular part of the interaction between two magnetic dipoles. After the angular part has been reduced to principal axes, the solution of the Schrödinger equation with such a potential leads to the Lamé wave equation. Solutions are found in the first order of perturbation theory, and a study is made of the splitting of the energy levels of a centrally symmetric field when a noncentral potential of this kind is presented. In particular, the energy level splitting is calculated in the presence of such a potential in the case of the Coulomb potential and a potential with a quadratic dependence on the radius.
@article{TMF_1973_14_2_a2,
     author = {I. Lukach and Ya. A. Smorodinskii},
     title = {Separation of variables in a spheroconical coordinate system and the {Schr\"odinger} equation for a case of noncentral forces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {170--179},
     year = {1973},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a2/}
}
TY  - JOUR
AU  - I. Lukach
AU  - Ya. A. Smorodinskii
TI  - Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 170
EP  - 179
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a2/
LA  - ru
ID  - TMF_1973_14_2_a2
ER  - 
%0 Journal Article
%A I. Lukach
%A Ya. A. Smorodinskii
%T Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 170-179
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a2/
%G ru
%F TMF_1973_14_2_a2
I. Lukach; Ya. A. Smorodinskii. Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 2, pp. 170-179. http://geodesic.mathdoc.fr/item/TMF_1973_14_2_a2/

[1] H. A. Kramers, G. P. Itman, Z. Phys., 53 (1929), 553 ; 58 (1929), 217 ; 60 (1930), 663 ; R. D. Spence, Amer. J. Phys., 27 (1969), 329 ; М. Д. О. Стрэтт, Функции Ламе, Матье и родственные им в физике и технике, Гос. научно-техн. изд-во Украины, 1935; И. Лукач, Я. А. Смородинский, ЖЭТФ, 57 (1969), 1342 | DOI | MR | Zbl | DOI | Zbl | DOI | Zbl | DOI | MR | MR

[2] M. N. Olevskii, Matem. sb., 27 (1950), 379 | MR | Zbl

[3] I. Lukach, TMF, 14:3 (1972)

[4] I. Ains, Obyknovennye differentsialnye uravneniya, Gos. nauchno-tekhn. izd-vo Ukrainy, 1939 ; Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, т. 3, «Наука», 1967 | MR | MR

[5] A. S. Davydov, Kvantovaya mekhanika, Fizmatgiz, 1963 | MR