State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations
Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 1, pp. 91-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown by means of the electron-exciton interaction that conduction electrons may interact nonlocally with uncharged elementary excitations in a crystal. In the case of such an interaction the carrier state is very different from the polaron state. The carrier energy spectrum is investigated for the case of a nonlocal electron-exciton interaction at $T=0$ for weak and strong electron-exciton coupling. Upper and lower bounds for the ground-state energy of such a quasiparticle (transferon) are found for an arbitrary electron-exciton coupling.
@article{TMF_1973_14_1_a8,
     author = {\`E. L. Nagaev},
     title = {State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {91--101},
     year = {1973},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1973_14_1_a8/}
}
TY  - JOUR
AU  - È. L. Nagaev
TI  - State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1973
SP  - 91
EP  - 101
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1973_14_1_a8/
LA  - ru
ID  - TMF_1973_14_1_a8
ER  - 
%0 Journal Article
%A È. L. Nagaev
%T State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1973
%P 91-101
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1973_14_1_a8/
%G ru
%F TMF_1973_14_1_a8
È. L. Nagaev. State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations. Teoretičeskaâ i matematičeskaâ fizika, Tome 14 (1973) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/TMF_1973_14_1_a8/

[1] S. I. Pekar, Issledovaniya po elektronnoi teorii kristallov, M.–L., 1951; Н. Н. Боголюбов, Укр. матем. ж., 2 (1952), 3 ; С. В. Тябликов, ЖЭТФ, 21 (1951), 377 ; 23 (1952), 381 | MR | MR | Zbl

[2] E. L. Nagaev, Pisma ZhETF, 6 (1967), 485; ЖЭТФ, 54 (1968), 228

[3] M. A. Krivoglaz, FTT, 11 (1969), 2230

[4] M. A. Krivoglaz, A. A. Truschenko, FTT, 11 (1969), 3119

[5] E. L. Nagaev, ZhETF, 59 (1970), 1215

[6] E. L. Nagaev, ZhETF, 57 (1969), 469

[7] V. M. Agranovich, Teoriya eksitonov, «Nauka», 1968

[8] R. Dietz, A. Meixner, H. Guggenheim, A. Misetich, Phys. Rev. Let., 21 (1968), 1067 | DOI

[9] L. N. Bulaevskii, E. L. Nagaev, D. I. Khomskii, ZhETF, 54 (1968), 1562

[10] E. L. Nagaev, ZhETF, 58 (1970), 1269

[11] F. Dyson, Phys. Rev., 102, 1217 ; (1956), 1230 | DOI | MR | Zbl | DOI | MR

[12] Ch. Kittel, Kvantovaya teoriya tverdykh tel, «Nauka», 1967

[13] S. V. Tyablikov, ZhETF, 21 (1951), 377 | MR

[14] N. N. Bogolyubov, Lektsii z kvantovoi statistiki, «Radyanska shkola», 1949