On solutions of Bogolyubov's kinetic equations quantum statistics
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 391-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bogolyubov's kinetic equations are studied for quantum statistics. A method proposed by Bogolyubov is used to investigate the solutions of the kinetic equations in a Banach space consisting of sequences of nuclear operators in the state space. This makes it possible to construct solutions of the kinetic equations in a finite volume for physically meaningful initial conditions. Weak, or smeared, solutions are constructed in the space of bounded operators.
@article{TMF_1972_13_3_a9,
     author = {D. Ya. Petrina},
     title = {On solutions of {Bogolyubov's} kinetic equations quantum statistics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--405},
     year = {1972},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a9/}
}
TY  - JOUR
AU  - D. Ya. Petrina
TI  - On solutions of Bogolyubov's kinetic equations quantum statistics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 391
EP  - 405
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a9/
LA  - ru
ID  - TMF_1972_13_3_a9
ER  - 
%0 Journal Article
%A D. Ya. Petrina
%T On solutions of Bogolyubov's kinetic equations quantum statistics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 391-405
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a9/
%G ru
%F TMF_1972_13_3_a9
D. Ya. Petrina. On solutions of Bogolyubov's kinetic equations quantum statistics. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 391-405. http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a9/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, GITTL, 1946 ; М. М. Боголюбов, Лекцii з квантовоi статистики, Киев, 1949 ; Н. Н. Боголюбов, Избранные труды, т. 2, «Наукова думка», Киев, 1970 | MR | Zbl | MR

[2] J. Ginibre, J. Math. Phys., 6, 238 ; (1965), 252 | DOI | MR | Zbl | DOI | MR

[3] D. Ruelle, Ann. Phys., 25 (1963), 209 | DOI | MR

[4] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl

[5] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 4, Fizmatgiz, 1961 | MR

[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, «Nauka», 1965 | MR

[7] T. Kato, Trans. Amer. Math. Soc., 70 (1965), 195 | DOI | MR

[8] E. Nelson, J. Math. Phys., 5 (1964), 332 | DOI | MR | Zbl

[9] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, «Nauka», 1970 ; С. Г. Крейн, Линейные дифференциальные уравнения в банаховом пространстве, «Наука», 1967 | MR | MR