Analytic continuation of functions defined on subgroups of the complex Lorentz group
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 321-326
Voir la notice de l'article provenant de la source Math-Net.Ru
A question that arises in the group-theoretical approach to the problem of conspiring Regge
trajectories is discussed - the analytic continuation of functions defined on subgroups of the
complex Lorentz group. It is shown that a real-analytic function $f(\varphi,\cos\theta,\psi)$ on $SU(2)$ that
is analytic in $\omega=\cos\theta$ in the whole plane can be continued to a complex-analytic function on
$SL(2C)$.
@article{TMF_1972_13_3_a2,
author = {V. I. Kolomytsev},
title = {Analytic continuation of functions defined on subgroups of the complex {Lorentz} group},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {321--326},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/}
}
TY - JOUR AU - V. I. Kolomytsev TI - Analytic continuation of functions defined on subgroups of the complex Lorentz group JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 321 EP - 326 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/ LA - ru ID - TMF_1972_13_3_a2 ER -
V. I. Kolomytsev. Analytic continuation of functions defined on subgroups of the complex Lorentz group. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 321-326. http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/