Analytic continuation of functions defined on subgroups of the complex Lorentz group
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 321-326

Voir la notice de l'article provenant de la source Math-Net.Ru

A question that arises in the group-theoretical approach to the problem of conspiring Regge trajectories is discussed - the analytic continuation of functions defined on subgroups of the complex Lorentz group. It is shown that a real-analytic function $f(\varphi,\cos\theta,\psi)$ on $SU(2)$ that is analytic in $\omega=\cos\theta$ in the whole plane can be continued to a complex-analytic function on $SL(2C)$.
@article{TMF_1972_13_3_a2,
     author = {V. I. Kolomytsev},
     title = {Analytic continuation of functions defined on subgroups of the complex {Lorentz} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {321--326},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/}
}
TY  - JOUR
AU  - V. I. Kolomytsev
TI  - Analytic continuation of functions defined on subgroups of the complex Lorentz group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 321
EP  - 326
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/
LA  - ru
ID  - TMF_1972_13_3_a2
ER  - 
%0 Journal Article
%A V. I. Kolomytsev
%T Analytic continuation of functions defined on subgroups of the complex Lorentz group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 321-326
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/
%G ru
%F TMF_1972_13_3_a2
V. I. Kolomytsev. Analytic continuation of functions defined on subgroups of the complex Lorentz group. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 321-326. http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a2/