Local and asymptotic structure of quantum systems with superselection rules
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 291-312
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors' algebraic description of an arbitrary quantum system with superselection rules
is used to investigate the local and asymptotic structure of such systems. The main attention
is devoted to the equivalence properties of coherent superselection sectors. It is shown
that physical (weak) equivalence of coherent sectors is not guaranteed by the Haag–Araki
postulates and that it is equivalent to the quasilocal algebra's being simple, the condition
of extended locality, and the globality property of the superseleetion operators. The structure
of the quasilocal algebra ideals is completely described. An “asymptotic” condition is
introduced; it guarantees asymptotic unitary equivalence of coherent sectors and also that
all vector states are asymptotically close (with respect to space-like translations) to the
vacuum state.
@article{TMF_1972_13_3_a0,
author = {V. N. Sushko and S. S. Horuzhy},
title = {Local and asymptotic structure of quantum systems with superselection rules},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--312},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a0/}
}
TY - JOUR AU - V. N. Sushko AU - S. S. Horuzhy TI - Local and asymptotic structure of quantum systems with superselection rules JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 291 EP - 312 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a0/ LA - ru ID - TMF_1972_13_3_a0 ER -
V. N. Sushko; S. S. Horuzhy. Local and asymptotic structure of quantum systems with superselection rules. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 3, pp. 291-312. http://geodesic.mathdoc.fr/item/TMF_1972_13_3_a0/