Phase transitions in systems with long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 266-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The diagram method is used to study phase transitions in systems with $R\to\infty$ Where $R$ is the range of the attractive potential between particles. If the thermodynamic functions are to be calculated correctly in the neighborhood of a phase transition, it is necessary to allow for diagrams with many vertices and lines. To allow for their contribution, a recursion relation is obtained; it relates diagrams of different orders and structures. The relation is used to estimate the contribution from all the many-vertex diagrams and to obtain a differential equation for $p(\mu,T)$ that is valid as $R\to\infty$ ($p$ is the pressure, $T$ the temperature, and $\mu$ the chemical potential). The solution is investigated for the example of the Ising model. In the two-phase region the $s(H)$ curve does not exhibit the unphysical region with negative susceptibility found in the Curie–Weiss approximation ($s$ is the polarization, $H$ the magnetic field). It follows from the solution that is found that the point $R=\infty$ is an essential singularity, so that the thermodynamic functions cannot be expanded in a Taylor series in powers of $1/R^3$ at points near the phase transition. It is shown that allowing for many-vertex diagrams is equivalent to having an effective interaction between the particles of the “all with all” type that is independent of the mutual separations of the particles.
@article{TMF_1972_13_2_a9,
     author = {O. A. Ol'khov and B. N. Provotorov and A. I. Rez},
     title = {Phase transitions in systems with long-range potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {266--275},
     year = {1972},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a9/}
}
TY  - JOUR
AU  - O. A. Ol'khov
AU  - B. N. Provotorov
AU  - A. I. Rez
TI  - Phase transitions in systems with long-range potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 266
EP  - 275
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a9/
LA  - ru
ID  - TMF_1972_13_2_a9
ER  - 
%0 Journal Article
%A O. A. Ol'khov
%A B. N. Provotorov
%A A. I. Rez
%T Phase transitions in systems with long-range potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 266-275
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a9/
%G ru
%F TMF_1972_13_2_a9
O. A. Ol'khov; B. N. Provotorov; A. I. Rez. Phase transitions in systems with long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 266-275. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a9/

[1] V. Krivnov, O. Olkhov, B. Provotorov, A. Rez, Phys. Lett., 29A (1969), 144 | DOI

[2] V. Ya. Krivnov, O. A. Olkhov, B. N. Provotorov, M. E. Sarychev, TMF, 2 (1970), 244

[3] R. Braut, Fazovye perekhody, «Mir», 1967

[4] K. Khuang, Statisticheskaya mekhanika, «Mir», 1966

[5] M. Kac, G. E. Uhlenbeck, P. C. Hemmer, J. Math. Phys., 4 (1963), 216 | DOI | MR | Zbl

[6] P. Flori, Statisticheskaya mekhanika tsepnykh molekul, «Mir», 1971

[7] F. M. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, t. II, IL, 1960

[8] V. G. Vaks, A. I. Larkin, S. A. Pikin, ZhETF, 51 (1966), 61

[9] G. Stell, J. L. Lebowitz, S. Baer, W. Theumann, J. Math. Phys., 7 (1966), 1532 | DOI

[10] J. L. Lebowitz, O. Penrose, J. Math. Phys., 7 (1966), 98 | DOI | MR | Zbl