Quasibound states of an electron in a strong magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 251-265
Cet article a éte moissonné depuis la source Math-Net.Ru
Bound and quasibound energy levels of an electron in a strong magnetic field are investigated for a short-range impurity potential and an isotropic quadratic dispersion law. A formula applicable in all fields is obtained for a Born impurity potential. It is shown that there is at least one bound level at any Landau level $\mathcal E_{M0}$ (with angular momentum projection onto the direction of the magnetic field equal to $-M$, the remaining levels being quasibound for $M\geqslant1$).
@article{TMF_1972_13_2_a8,
author = {A. P. Kochkin},
title = {Quasibound states of an electron in a strong magnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {251--265},
year = {1972},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a8/}
}
A. P. Kochkin. Quasibound states of an electron in a strong magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 251-265. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a8/
[1] H. Hasegawa, R. E. Howard, J. Phys. Chem. Solids, 21 (1961), 179 | DOI | Zbl
[2] L. S. Kukushkin, ZhETF, 54 (1968), 1213; Ю. А. Бычков, ЖЭТФ, 39 (1960), 1401; А. М. Ермолаев, ЖЭТФ, 54 (1968), 1259; А. М. Ермолаев, М. И. Каганов, Письма ЖЭТФ, 6 (1967), 984
[3] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, 1963
[4] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, 1963 | MR
[5] A. P. Kochkin, ZhETF, 59 (1970), 1618
[6] A. P. Kochkin, ZhETF, 12 (1972), 239
[7] V. V. Stepanov, Kurs differentsialnykh uravnenii, Fizmatgiz, 1953
[8] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, «Nauka», 1969 | MR