Thermal conductivity of two-band superconductors with an impurity
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 222-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The electron thermal conductivity of a two-band superconductor with an impurity is found. Allowance is made for the energy bands overlapping in the neighborhood of the Fermi level and processes of intra- and interband scattering of electrons on impurities. It is shown that, in general, the contributions of the individual bands are not additive because of interband scattering. As a special case, the expressions contain the well-known result for a single-band isotropic model. The electron thermal conductivity is also calculated for a normal two-band metal.
@article{TMF_1972_13_2_a6,
     author = {V. A. Moskalenko and A. M. Ursu},
     title = {Thermal conductivity of two-band superconductors with an impurity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--240},
     year = {1972},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a6/}
}
TY  - JOUR
AU  - V. A. Moskalenko
AU  - A. M. Ursu
TI  - Thermal conductivity of two-band superconductors with an impurity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 222
EP  - 240
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a6/
LA  - ru
ID  - TMF_1972_13_2_a6
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%A A. M. Ursu
%T Thermal conductivity of two-band superconductors with an impurity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 222-240
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a6/
%G ru
%F TMF_1972_13_2_a6
V. A. Moskalenko; A. M. Ursu. Thermal conductivity of two-band superconductors with an impurity. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 222-240. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a6/

[1] J. Bardeen, L. Cooper, J. Schrieffer, Phys. Rev., 108 (1957), 1175 | DOI | MR | Zbl

[2] N. N. Bogolyubov, ZhETF, 34, 58 ; (1958), 73 ; Н. Н. Боголюбов, Д. Н. Зубарев, Ю. А. Церковников, ДАН СССР, 117 (1957), 788 | Zbl | Zbl

[3] B. T. Geilikman, ZhETF, 34 (1958), 1042

[4] J. Bardeen, G. Rickayzen, L. Tewordt, Phys. Rev., 113 (1959), 982 | DOI | MR | Zbl

[5] V. Z. Kresin, ZhETF, 36 (1959), 1947

[6] B. T. Geilikman, V. Z. Kresin, ZhETF, 41 (1961), 1142

[7] R. Cubo, M. Jokota, S. Nakayima, J. Phys. Soc. Japan, 12 (1957), 1203 | DOI | MR

[8] J. S. Langer, Phys. Rev., 128 (1962), 110 | DOI | Zbl

[9] L. P. Kadanoff, P. C. Martin, Phys. Rev., 124 (1961), 670 | DOI | MR | Zbl

[10] V. Ambegaokar, L. Tewordt, Phys. Rev., 134 (1964), 805 | DOI | MR

[11] V. Ambegaokar, A. Griffin, Phys. Rev., 137 (1965), 1151 | DOI | Zbl

[12] A. A. Abrikosov, L. P. Gorkov, ZhETF, 39 (1960), 1781

[13] B. T. Geilikman, V. Z. Kresin, UFN, 99 (1969), 51 | DOI

[14] R. Vasudevan, C. C. Sung, Phys. Rev., 144 (1966), 237 | DOI

[15] V. A. Moskalenko, FMM, 8 (1959), 503

[16] V. A. Moskalenko, M. E. Palistrant, ZhETF, 49 (1965), 770

[17] V. A. Moskalenko, DAN SSSR, 165 (1965), 313

[18] V. A. Moskalenko, Dokt. diss., Moskva, 1966

[19] V. A. Moskalenko, FMM, 23 (1967), 585

[20] L. Z. Kon, V. A. Moskalenko, Phys. Stat. Sol., 32 (1969), 545 | DOI

[21] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika, «Mir», 1964

[22] N. N. Bogolyubov, UFN, 67 (1959), 549 | DOI | MR