On phase transitions in the antiferromagnetic ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 276-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The diagram method is used to study the thermodynamic behavior of an Ising antiferromagnet with nearest-neighbor interaction as a function of the number of spatial dimensions $n$. In the diagram expansions of the thermodynamic quantities we separate out contributions that partly allow for the correlation energy, which is completely ignored in the selfconsistent-field approximation. If $n$ is finite, it is shown that the system is a single-phase state, but at large $n$ the asymptotic expansions of the thermodynamic quantities have singularities. In the limit $n\to\infty$ the adopted approximation leads to a phase transition described by the Curie–Weiss approximation, which, as is well known, becomes exact in this limit. The absence of a phase transition for finite $n$, predicted in the present approximation, is discussed.
@article{TMF_1972_13_2_a10,
     author = {V. Ya. Krivnov and B. N. Provotorov and M. E. Sarychev},
     title = {On phase transitions in the antiferromagnetic ising model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {276--285},
     year = {1972},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/}
}
TY  - JOUR
AU  - V. Ya. Krivnov
AU  - B. N. Provotorov
AU  - M. E. Sarychev
TI  - On phase transitions in the antiferromagnetic ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 276
EP  - 285
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/
LA  - ru
ID  - TMF_1972_13_2_a10
ER  - 
%0 Journal Article
%A V. Ya. Krivnov
%A B. N. Provotorov
%A M. E. Sarychev
%T On phase transitions in the antiferromagnetic ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 276-285
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/
%G ru
%F TMF_1972_13_2_a10
V. Ya. Krivnov; B. N. Provotorov; M. E. Sarychev. On phase transitions in the antiferromagnetic ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 276-285. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/

[1] R. Braut, Fazovye perekhody, «Mir», 1967

[2] L. D. Landau, E. M. Lifshits, Statisticheskaya mekhanika, «Nauka», 1964 | MR | Zbl

[3] O. A. Olkhov, B. N. Provotorov, A. I. Rez, TMF, 13 (1972), 266

[4] V. Ya. Krivnov, O. A. Olkhov, B. N. Provotorov, M. E. Sarychev, TMF, 2 (1970), 244

[5] S. Garret, J. Chem. Phys., 19 (1951), 1154 ; Антиферромагнетизм, Сб., ИЛ, 1956 | DOI

[6] V. Krivnov, O. Olkhov, B. Provotorov, M. Saritchev, Phys. Lett., 29A (1969), 196 | DOI

[7] P. Flori, Statisticheskaya mekhanika tsepnykh molekul, «Mir», 1971

[8] M. Fisher, Priroda kriticheskogo sostoyaniya, «Mir», 1968

[9] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, IL, 1952

[10] D. A. Graunt, M. E. Fisher, J. Chem. Phys., 43 (1965), 2840 | DOI | MR

[11] E. T. Kopson, Asimptoticheskie razlozheniya, «Mir», 1966

[12] M. Kac, C. J. Thompson, J. Math. Phys., 10 (1969), 1373 | DOI | MR | Zbl

[13] D. P. Landau, Phys. Rev. Lett., 28 (1972), 449 | DOI

[14] L. Reato, Phys. Rev., B5 (1972), 204 | DOI