On phase transitions in the antiferromagnetic ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 276-285
Voir la notice de l'article provenant de la source Math-Net.Ru
The diagram method is used to study the thermodynamic behavior of an Ising antiferromagnet
with nearest-neighbor interaction as a function of the number of spatial dimensions
$n$. In the diagram expansions of the thermodynamic quantities we separate out
contributions that partly allow for the correlation energy, which is completely ignored in
the selfconsistent-field approximation. If $n$ is finite, it is shown that the system is a
single-phase state, but at large $n$ the asymptotic expansions of the thermodynamic quantities
have singularities. In the limit $n\to\infty$ the adopted approximation leads to a phase
transition described by the Curie–Weiss approximation, which, as is well known, becomes
exact in this limit. The absence of a phase transition for finite $n$, predicted in the present
approximation, is discussed.
@article{TMF_1972_13_2_a10,
author = {V. Ya. Krivnov and B. N. Provotorov and M. E. Sarychev},
title = {On phase transitions in the antiferromagnetic ising model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {276--285},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/}
}
TY - JOUR AU - V. Ya. Krivnov AU - B. N. Provotorov AU - M. E. Sarychev TI - On phase transitions in the antiferromagnetic ising model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 276 EP - 285 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/ LA - ru ID - TMF_1972_13_2_a10 ER -
V. Ya. Krivnov; B. N. Provotorov; M. E. Sarychev. On phase transitions in the antiferromagnetic ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 2, pp. 276-285. http://geodesic.mathdoc.fr/item/TMF_1972_13_2_a10/