Klein-Gordon equation in Riemannian space
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 1, pp. 140-142
Voir la notice de l'article provenant de la source Math-Net.Ru
A solution that depends on $a(t)$ is obtained for the Klein–Gordon equation in the metric of a
closed Fridman model. The metric's being non-Euclidean and time-dependent leads to the
wave function's being damped in the f i r s t order and the frequency's being reduced in the
second order of an expansion in the small parameter $H/\omega_0\sim10^{-40}$.
@article{TMF_1972_13_1_a11,
author = {A. P. Bondarev and K. P. Stanyukovich},
title = {Klein-Gordon equation in {Riemannian} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {140--142},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a11/}
}
A. P. Bondarev; K. P. Stanyukovich. Klein-Gordon equation in Riemannian space. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 1, pp. 140-142. http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a11/