On the minimal size of particles in the general theory of relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 1, pp. 41-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the minimal size of particles in general relativity is considered. It is shown that a neutral particle's mass vanishes when its size tends to zero. But a point limit is impossible for an electrically charged particle. The minimal size of a particle allowed by its charge is discussed, and it is shown that a point limit is impossible in Papapetrou's model. In Euclidean space, the introduction of an extension of particles violates causality; it is shown that the extension that arises in general relativity does not. Another question discussed is this: is the total (inert) mass's being equal to the gravitating mass a condition under which the gravitational interaction has a regularizing effect?
@article{TMF_1972_13_1_a1,
     author = {M. A. Markov and V. P. Frolov},
     title = {On the minimal size of particles in the general theory of relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--61},
     year = {1972},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a1/}
}
TY  - JOUR
AU  - M. A. Markov
AU  - V. P. Frolov
TI  - On the minimal size of particles in the general theory of relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 41
EP  - 61
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a1/
LA  - ru
ID  - TMF_1972_13_1_a1
ER  - 
%0 Journal Article
%A M. A. Markov
%A V. P. Frolov
%T On the minimal size of particles in the general theory of relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 41-61
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a1/
%G ru
%F TMF_1972_13_1_a1
M. A. Markov; V. P. Frolov. On the minimal size of particles in the general theory of relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 13 (1972) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/TMF_1972_13_1_a1/

[1] M. Kruscal, Phys. Rev., 119 (1960), 1743 | DOI | MR

[2] I. D. Novikov, Astronom. zh., 43 (1966), 911 ; 41 (1964), 1073 ; 40 (1963), 772

[3] R. Arnowitt, S. Deser, C. Misner, Ann. Phys. (N. Y.), 38 (1965), 88 | DOI | MR

[4] L. D. Landau, E. M. Lifshits, Teoriya polya, «Nauka», 1967 | MR | Zbl

[5] A. Einshtein, Sobr. soch., t. II, «Nauka», 1966, str. 514 ; Ann. Math., 40 (1939), 922 | MR | DOI | MR

[6] M. A. Markov, V. P. Frolov, TMF, 3 (1970), 3

[7] A. Papapetrou, Proc. Roy. Irish. Acad., A51 (1945), 191 | MR

[8] W. Bonnor, Z. Phys., 160 (1960), 59 | DOI | MR | Zbl

[9] P. I. Fomin, V. I. Truten, YaF, 9 (1960), 838

[10] P. Budini, G. Calucci, Nuovo Cim., 70A (1971), 419

[11] C. Isham, A. Salam, I. Strathdee, Lett. Nuovo Cim., 4 (1971), 101

[12] M. K. Volkov, Preprint R2-5569, OIYaI, 1971

[13] R. Arnowitt, S. Deser, C. Misner, Phys. Rev., 120 (1960), 313 | DOI | MR | Zbl

[14] S. N. Gupta, Rev. Mod. Phys., 29 (1957), 334 | DOI | MR | Zbl