Perturbation theory for resonance and virtual states
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 397-406
Cet article a éte moissonné depuis la source Math-Net.Ru
On the basis of the Hilbert–Schmidt method a perturbation theory is developed that gives a uniform description of the corrections to the energies of bound, virtual, and resonance states . The corrections to the phase shifts are found. A short-range and the Coulomb potential are considered as perturbations.
@article{TMF_1972_12_3_a7,
author = {S. I. Manaenkov},
title = {Perturbation theory for resonance and virtual states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--406},
year = {1972},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a7/}
}
S. I. Manaenkov. Perturbation theory for resonance and virtual states. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a7/
[1] R. Jost, A. Pais, Phys. Rev., 82 (1951), 840 | DOI | MR | Zbl
[2] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR
[3] S. Weinberg, Phys. Rev., 131 (1963), 440 | DOI | MR
[4] I. M. Narodetskii, Preprint No 621, ITEF, 1969 | MR
[5] I. M. Narodetskii, YaF, 9 (1969), 1086
[6] Ya. B. Zeldovich, ZhETF, 39 (1960), 777
[7] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, 1963
[8] S. Weinberg, Phys. Rev., 130 (1963), 776 | DOI | MR
[9] V. I. Smirnov, Kurs vysshei matematiki, t. IV, Gostekhteorizdat, 1957 | MR
[10] J. D. Jackson, J. M. Blatt, Rev. Mod. Phys., 22 (1950), 77 | DOI