Group-theoretical meaning of dual transformations in the space of coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 370-383

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation of $SL(2,R)$ is obtained that implements dual transformations in the space of coherent states of a five-dimensional oscillator. The representation is used to factorize dual $N$-point amplitudes of semimultiperipheral type.
@article{TMF_1972_12_3_a4,
     author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
     title = {Group-theoretical meaning of dual transformations in the space of coherent states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--383},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/}
}
TY  - JOUR
AU  - Kh. D. Popov
AU  - D. Ts. Stoyanov
AU  - A. N. Tavkhelidze
TI  - Group-theoretical meaning of dual transformations in the space of coherent states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 370
EP  - 383
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/
LA  - ru
ID  - TMF_1972_12_3_a4
ER  - 
%0 Journal Article
%A Kh. D. Popov
%A D. Ts. Stoyanov
%A A. N. Tavkhelidze
%T Group-theoretical meaning of dual transformations in the space of coherent states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 370-383
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/
%G ru
%F TMF_1972_12_3_a4
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. Group-theoretical meaning of dual transformations in the space of coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 370-383. http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/