Group-theoretical meaning of dual transformations in the space of coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 370-383
Voir la notice de l'article provenant de la source Math-Net.Ru
A representation of $SL(2,R)$ is obtained that implements dual transformations in the space of
coherent states of a five-dimensional oscillator. The representation is used to factorize dual
$N$-point amplitudes of semimultiperipheral type.
@article{TMF_1972_12_3_a4,
author = {Kh. D. Popov and D. Ts. Stoyanov and A. N. Tavkhelidze},
title = {Group-theoretical meaning of dual transformations in the space of coherent states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--383},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/}
}
TY - JOUR AU - Kh. D. Popov AU - D. Ts. Stoyanov AU - A. N. Tavkhelidze TI - Group-theoretical meaning of dual transformations in the space of coherent states JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 370 EP - 383 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/ LA - ru ID - TMF_1972_12_3_a4 ER -
%0 Journal Article %A Kh. D. Popov %A D. Ts. Stoyanov %A A. N. Tavkhelidze %T Group-theoretical meaning of dual transformations in the space of coherent states %J Teoretičeskaâ i matematičeskaâ fizika %D 1972 %P 370-383 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/ %G ru %F TMF_1972_12_3_a4
Kh. D. Popov; D. Ts. Stoyanov; A. N. Tavkhelidze. Group-theoretical meaning of dual transformations in the space of coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 3, pp. 370-383. http://geodesic.mathdoc.fr/item/TMF_1972_12_3_a4/