Exact solution of the BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238
Cet article a éte moissonné depuis la source Math-Net.Ru
Interest continues to be evinced for rigorous mathematical derivations of results in the BCS model [1-7]. The present paper contains a further method of exact investigation of the BCS model; it is based on a special representation of this model's Hamiltonian. This representation enables one to transform the Hamiltonian into a second-order finitedifference operator which, in its turn, goes over in the thermodynamic limit into an elliptic differential operator that is readily amenable to investigation.
@article{TMF_1972_12_2_a8,
author = {I. A. Bernadskii and R. A. Minlos},
title = {Exact solution of the {BCS} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {227--238},
year = {1972},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/}
}
I. A. Bernadskii; R. A. Minlos. Exact solution of the BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/
[1] N. N. Bogolyubov, Preprint R-511, OIYaI, 1960 | MR
[2] N. N. Bogolyubov, Physica, 26 (1960), 1 | DOI
[3] N. N. Bogolyubov (ml.), Ukr. matem. zh., 17 (1965), 3
[4] N. N. Bogolyubov (ml.), Vestn. MGU, 1966, no. 1, 94
[5] P. W. Anderson, Phys. Rev., 112 (1958), 1900 | DOI | MR
[6] R. A. Minlos, ZhETF, 50 (1966), 642
[7] E. Tareeva, Diss., MIAN SSSR, 1965
[8] Dzh. Bardin, L. Kuper, Dzh. Shriffer, Teoriya sverkhprovodimosti, Sb., IL, 1960
[9] N. N. Bogolyubov, V. V. Tolmachev, D. V. Shirkov, Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, 1958
[10] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958