Exact solution of the BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238

Voir la notice de l'article provenant de la source Math-Net.Ru

Interest continues to be evinced for rigorous mathematical derivations of results in the BCS model [1-7]. The present paper contains a further method of exact investigation of the BCS model; it is based on a special representation of this model's Hamiltonian. This representation enables one to transform the Hamiltonian into a second-order finitedifference operator which, in its turn, goes over in the thermodynamic limit into an elliptic differential operator that is readily amenable to investigation.
@article{TMF_1972_12_2_a8,
     author = {I. A. Bernadskii and R. A. Minlos},
     title = {Exact solution of the {BCS} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/}
}
TY  - JOUR
AU  - I. A. Bernadskii
AU  - R. A. Minlos
TI  - Exact solution of the BCS model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 227
EP  - 238
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/
LA  - ru
ID  - TMF_1972_12_2_a8
ER  - 
%0 Journal Article
%A I. A. Bernadskii
%A R. A. Minlos
%T Exact solution of the BCS model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 227-238
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/
%G ru
%F TMF_1972_12_2_a8
I. A. Bernadskii; R. A. Minlos. Exact solution of the BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/