Exact solution of the BCS model
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interest continues to be evinced for rigorous mathematical derivations of results in the BCS model [1-7]. The present paper contains a further method of exact investigation of the BCS model; it is based on a special representation of this model's Hamiltonian. This representation enables one to transform the Hamiltonian into a second-order finitedifference operator which, in its turn, goes over in the thermodynamic limit into an elliptic differential operator that is readily amenable to investigation.
@article{TMF_1972_12_2_a8,
     author = {I. A. Bernadskii and R. A. Minlos},
     title = {Exact solution of the {BCS} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--238},
     year = {1972},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/}
}
TY  - JOUR
AU  - I. A. Bernadskii
AU  - R. A. Minlos
TI  - Exact solution of the BCS model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 227
EP  - 238
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/
LA  - ru
ID  - TMF_1972_12_2_a8
ER  - 
%0 Journal Article
%A I. A. Bernadskii
%A R. A. Minlos
%T Exact solution of the BCS model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 227-238
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/
%G ru
%F TMF_1972_12_2_a8
I. A. Bernadskii; R. A. Minlos. Exact solution of the BCS model. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a8/

[1] N. N. Bogolyubov, Preprint R-511, OIYaI, 1960 | MR

[2] N. N. Bogolyubov, Physica, 26 (1960), 1 | DOI

[3] N. N. Bogolyubov (ml.), Ukr. matem. zh., 17 (1965), 3

[4] N. N. Bogolyubov (ml.), Vestn. MGU, 1966, no. 1, 94

[5] P. W. Anderson, Phys. Rev., 112 (1958), 1900 | DOI | MR

[6] R. A. Minlos, ZhETF, 50 (1966), 642

[7] E. Tareeva, Diss., MIAN SSSR, 1965

[8] Dzh. Bardin, L. Kuper, Dzh. Shriffer, Teoriya sverkhprovodimosti, Sb., IL, 1960

[9] N. N. Bogolyubov, V. V. Tolmachev, D. V. Shirkov, Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, 1958

[10] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958