Potentials of the type $a_n/r^n$, $n>1$, in collapsing systems in general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 153-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear generalization of Maxwell's equations is constructed; it leads to static repulsive potentials of the type $a_n/r^n$, $n>1$. The corresponding analog of the Nordström– Reissner metric is constructed. It is shown that in classical, i.e., nonquantum, physics the forces, $a_n/r^{n+1}$, $n>1$, do not lead to divergences of the source selfenergy in general relativity. It is shown that if a collapsing system passes through its gravitational radius – forming a black hole – the classical forces $a_n/r^{n+1}$, $n>1$, and also the electrostatic and gravitational forces, do not vanish in the exterior space; this result contradicts Hartle's result [6] obtained for pair neutrino forces $(\sim1/r^5)$.
@article{TMF_1972_12_2_a0,
     author = {V. A. Berezin and M. A. Markov},
     title = {Potentials of the type $a_n/r^n$, $n>1$, in collapsing systems in general relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--163},
     year = {1972},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a0/}
}
TY  - JOUR
AU  - V. A. Berezin
AU  - M. A. Markov
TI  - Potentials of the type $a_n/r^n$, $n>1$, in collapsing systems in general relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 153
EP  - 163
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a0/
LA  - ru
ID  - TMF_1972_12_2_a0
ER  - 
%0 Journal Article
%A V. A. Berezin
%A M. A. Markov
%T Potentials of the type $a_n/r^n$, $n>1$, in collapsing systems in general relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 153-163
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a0/
%G ru
%F TMF_1972_12_2_a0
V. A. Berezin; M. A. Markov. Potentials of the type $a_n/r^n$, $n>1$, in collapsing systems in general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 2, pp. 153-163. http://geodesic.mathdoc.fr/item/TMF_1972_12_2_a0/

[1] R. Arnowitt, S. Deser, C. W. Misner, Phys. Rev., 120 (1960), 313 | DOI | MR | Zbl

[2] M. A. Markov, Preprint, IC 71 33, Trieste, 1971 ; М. А. Марков, В. П. Фролов, ТМФ, 3 (1970), 3 | MR

[3] I. Tamm, Nature, 134 (1934), 1010 | DOI | Zbl

[4] G. Feinberg, I. Sucher, Phys. Rev., 166 (1968), 1638 | DOI

[5] M. A. Markov, Ann. Phys., 59 (1970), 109 | DOI

[6] J. B. Hartle, Preprint, University of California, 1971 | Zbl

[7] R. Ruffini, J. Wheeler, Physics Today, January, 1971, 30 | DOI

[8] L. D. Landau, E. M. Lifshits, Teoriya polya, «Nauka», 1967 | MR | Zbl

[9] I. D. Novikov, Astr. zh., 40 (1963), 772 ; 41 (1964), 1075 ; 43 (1966), 911 | Zbl