Exact solution for the higher correlation functions of the linear spin-1 Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 1, pp. 147-150
Cet article a éte moissonné depuis la source Math-Net.Ru
The one-dimensional Ising problem for spin $S=1$ is solved by the method of two-time Green's functions. The chain of equations of motion admit exact decoupling and they lead to a set of exact relationships for the correlation functions, which are investigated by the “method of difference equations”. The general form of the spatial structure of the correlation functions is determined in the absence of an external magnetic field, and the main physical characteristics are obtained for an infinite chain of spins.
@article{TMF_1972_12_1_a12,
author = {R. T. Galiullin and M. P. Zhelifonov and B. S. Nikitin},
title = {Exact solution for the higher correlation functions of the linear spin-1 {Ising} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--150},
year = {1972},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a12/}
}
TY - JOUR AU - R. T. Galiullin AU - M. P. Zhelifonov AU - B. S. Nikitin TI - Exact solution for the higher correlation functions of the linear spin-1 Ising model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 147 EP - 150 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a12/ LA - ru ID - TMF_1972_12_1_a12 ER -
%0 Journal Article %A R. T. Galiullin %A M. P. Zhelifonov %A B. S. Nikitin %T Exact solution for the higher correlation functions of the linear spin-1 Ising model %J Teoretičeskaâ i matematičeskaâ fizika %D 1972 %P 147-150 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a12/ %G ru %F TMF_1972_12_1_a12
R. T. Galiullin; M. P. Zhelifonov; B. S. Nikitin. Exact solution for the higher correlation functions of the linear spin-1 Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a12/
[1] S. V. Tyablikov, V. K. Fedyanin, FMM, 23 (1967), 193
[2] T. Oguchi, I. Ono, Progr. Theor. Phys., 35 (1966), 998 | DOI
[3] M. P. Zhelifonov, TMF, 8 (1971), 401
[4] M. P. Zhelifonov, Avtoref. kand. diss., KFTI, Kazan, 1970
[5] M. Suzuki, B. Tsujiyama, S. Katsura, J. Math. Phys., 8 (1967), 124 | DOI
[6] T. Obokata, T. Oguchi, J. Phys. Soc. Japan, 25 (1968), 322 | DOI
[7] M. Fisher, Priroda kriticheskogo sostoyaniya, «Mir», 1968