Asymptotic behavior of Gibbsian distributions for lattice systems and its dependence on the form of the volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 1, pp. 115-134
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the cases for which the existence of Gibbsian states in an infinite lattice
was proved in earlier papers. It is proved that Gibbstan states exist in an infinite region, which
may be part of the complete lattice, and an investigation is made of the dependence of the correlation
functions on the form of the region. The second term in the asymptotic behavior of
the free energy, which depends on the form of the region, is found. Finally, some properties
of correlation weakening for such Gibbsian states are investigated.
@article{TMF_1972_12_1_a10,
author = {R. L. Dobrushin},
title = {Asymptotic behavior of {Gibbsian} distributions for lattice systems and its dependence on the form of the volume},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {115--134},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a10/}
}
TY - JOUR AU - R. L. Dobrushin TI - Asymptotic behavior of Gibbsian distributions for lattice systems and its dependence on the form of the volume JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 115 EP - 134 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a10/ LA - ru ID - TMF_1972_12_1_a10 ER -
%0 Journal Article %A R. L. Dobrushin %T Asymptotic behavior of Gibbsian distributions for lattice systems and its dependence on the form of the volume %J Teoretičeskaâ i matematičeskaâ fizika %D 1972 %P 115-134 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a10/ %G ru %F TMF_1972_12_1_a10
R. L. Dobrushin. Asymptotic behavior of Gibbsian distributions for lattice systems and its dependence on the form of the volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 12 (1972) no. 1, pp. 115-134. http://geodesic.mathdoc.fr/item/TMF_1972_12_1_a10/