On the theory of the superfluidity of two- and one-dimensional bose systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 354-365
Cet article a éte moissonné depuis la source Math-Net.Ru
A hydrodynamic Hamiltonian for two- and one-dimensional Bose systems is constructed by the method of functional integration. Its form indicates that there is superfluidity and two- fluid hydrodynamics at low temperatures despite the absence of a condensate. This result is clear from the fact that the single-particle Green's functions decrease at large distances in accordance with a power law in two-dimensional systems if $T\ne0$ and in one-dimensional systems if $T=0$, while they decrease exponentially in one-dimensional systems if $T\ne0$. A model is calculated for a two-dimensional low-density Bose gas; the thermodynamic functions and the equation of the phase transition curve are found. It is shown that allowance for quantum vortices in a two-dimensional Bose system does not alter the power-law decrease of the Green's functions at large distances.
@article{TMF_1972_11_3_a8,
author = {V. N. Popov},
title = {On the theory of the superfluidity of two- and one-dimensional bose systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {354--365},
year = {1972},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a8/}
}
V. N. Popov. On the theory of the superfluidity of two- and one-dimensional bose systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 354-365. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a8/
[1] N. N. Bogolyubov, Kvazisrednie v zadachakh Statisticheskoi mekhaniki, Preprint D-781, OIYaI, 1961 | MR
[2] L. Reatto, G. V. Chester, Phys. Rev., 155 (1967), 88 | DOI
[3] E. B. Sonin, ZhETF, 59 (1970), 1416
[4] G. Lasher, Phys. Rev., 172 (1968), 224 | DOI
[5] V. L. Berezinskii, ZhETF, 59 (1970), 907; ЖЭТФ, 61 (1971), 1144
[6] V. N. Popov, TMF, 6 (1971), 90
[7] V. N. Popov, TMF, 11 (1972), 100 | MR
[8] E. H. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl
[9] E. H. Lieb, Phys. Rev., 130 (1963), 1616 | DOI | MR
[10] C. N. Yang, C. P. Yang, J. Math. Phys., 10 (1969), 1115 | DOI | MR | Zbl
[11] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, «Nauka», 1965 | MR