Note on the construction of the Bogolyubov scattering operator in the $({:}\varphi^4{:})_2$ theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 331-336
Cet article a éte moissonné depuis la source Math-Net.Ru
The Bogolyubov scattering operator $S(g)$ is constructed for the ${:}\varphi^4{:}_2$ theory in the special case when the space-time cutoff has a product structure that consists of two smooth functions: one corresponding to a time cutoff and the other to a space cutoff. Unitarity and causality are verified for this operator. The generalization of these results to a large class of cutoffs is discussed.
@article{TMF_1972_11_3_a5,
author = {W. F. Wrezinski},
title = {Note on the construction of the {Bogolyubov} scattering operator in the $({:}\varphi^4{:})_2$ theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {331--336},
year = {1972},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a5/}
}
TY - JOUR
AU - W. F. Wrezinski
TI - Note on the construction of the Bogolyubov scattering operator in the $({:}\varphi^4{:})_2$ theory
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1972
SP - 331
EP - 336
VL - 11
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a5/
LA - ru
ID - TMF_1972_11_3_a5
ER -
W. F. Wrezinski. Note on the construction of the Bogolyubov scattering operator in the $({:}\varphi^4{:})_2$ theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 331-336. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a5/
[1] J. Glimm, A. Jaffe, Les Houches Lectures 1970, Gordon, N.-Y., 1971 (to appear) | Zbl
[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Fizmatgiz, 1956 | MR
[3] B. Simon, R. Hoegh-Krohn, J. Funct. Analysis (to appear)
[4] Chastnoe soobschenie K. Kheppu
[5] K. Yosida, Functional Analysis, Springer Verlag, 1965 ; K. Iosida, Funktsionalnyi analiz, «Mir», 1968 | MR | MR
[6] V. Faris, J. Funct. Analysis, 1 (1964), 93 | DOI | MR
[7] E. Nelson, J. Math. Phys., 5 (1964), 332 | DOI | MR | Zbl