Essen tially nonlinear scalar fields and the geometry of space-time
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 293-300
Cet article a éte moissonné depuis la source Math-Net.Ru
A study i s made of the curvature of space-time in essentially nonlinear fields. The determination of the metric in a field with given Lagrangian is discussed . It i s shown that if the Lagrangian is previously known, measurement of the velocity of signals in given fields enables one to verify predictions of the theory . A further interesting consequence of curvature of space-time is considered – the universal interaction of all fields with a given essentially nonlinear field.
@article{TMF_1972_11_3_a2,
author = {Nguyen Van Hieu},
title = {Essen tially nonlinear scalar fields and the geometry of space-time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {293--300},
year = {1972},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a2/}
}
Nguyen Van Hieu. Essen tially nonlinear scalar fields and the geometry of space-time. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 293-300. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a2/
[1] D. I. Blokhintsev, DAN SSSR, 82 (1953), 55
[2] D. I. Blokhinsev, Nuovo Cim., Suppl., 10 (1956), 629
[3] M. Svirskii, Vestn. MGU, 5 (1951), 43
[4] D. I. Blokhintsev, DAN SSSR, 168 (1966), 774
[5] Dao Vong Dyk, Nguen Van Kheu, TMF, 2 (1970), 55
[6] W. Heisenberg, L. Euler, Z. Phys., 98 (1936), 714 | DOI | Zbl
[7] D. I. Blokhintsev, V. V. Orlov, ZhETF, 25 (1953), 513