States associated with the two-dimensional Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 421-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of states on the algebra of 0uasilocal observables generated by the transfer matrix of the two-dimensional Ising model and its highest eigenvecto r in the infinite-volume limit. Both states are quasifree and the latter (“ground state”) is pure. The limit transfer matrix $P_{\infty}$ is also calculated in the space of the representation associated with the ground state. All the calculations are made by the Onsager–Kaufman method.
@article{TMF_1972_11_3_a14,
     author = {S. A. Pirogov},
     title = {States associated with the two-dimensional {Ising} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--426},
     year = {1972},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a14/}
}
TY  - JOUR
AU  - S. A. Pirogov
TI  - States associated with the two-dimensional Ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 421
EP  - 426
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a14/
LA  - ru
ID  - TMF_1972_11_3_a14
ER  - 
%0 Journal Article
%A S. A. Pirogov
%T States associated with the two-dimensional Ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 421-426
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a14/
%G ru
%F TMF_1972_11_3_a14
S. A. Pirogov. States associated with the two-dimensional Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 421-426. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a14/

[1] R. A. Minlos, Ya. G. Sinai, TMF, 2 (1970), 230 | MR

[2] T. D. Shultz, D. E. Mattis, H. E. Lieb, Rev. Mod. Phys., 36 (1964), 856 | DOI | MR

[3] D. Testard, F. Rocca, M. Sirugue, Commun. Math. Phys., 13 (1969), 317 | DOI | MR

[4] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR

[5] A. Guichardet, Produits tensoriels infinis, Paris, 1966 ; Ann. scient, Ec. Norm. Suppl., 83 | MR | Zbl