Nonpolynomial Lagrangians (higher perturbation orders)
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 273-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a theory with a nonpolynomial Lagrangian remains finite in higher perturbation orders in the principal coupling constant $G$. It is also shown that the $S$ matrix remains unitary in the third perturbation order in $G$. The order of growth of the scattering amplitude is found in an arbitrary perturbation order.
@article{TMF_1972_11_3_a0,
     author = {M. K. Volkov},
     title = {Nonpolynomial {Lagrangians} (higher perturbation orders)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {273--287},
     year = {1972},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/}
}
TY  - JOUR
AU  - M. K. Volkov
TI  - Nonpolynomial Lagrangians (higher perturbation orders)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 273
EP  - 287
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/
LA  - ru
ID  - TMF_1972_11_3_a0
ER  - 
%0 Journal Article
%A M. K. Volkov
%T Nonpolynomial Lagrangians (higher perturbation orders)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 273-287
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/
%G ru
%F TMF_1972_11_3_a0
M. K. Volkov. Nonpolynomial Lagrangians (higher perturbation orders). Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 273-287. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/

[1] M. K. Volkov, EChAYa, 2:1 (1971), 33, (sm. ssylki) | MR

[2] M. K. Volkov, Commun. Math. Phys., 7 (1968), 289 ; A. Salam, J. Strathdee, Phys. Rev., D1 (1970), 3296 ; J. G. Taylor, Preprint, April, 1971, University of Southampton ; K. Pohlmeyer, Preprint, Institute for Advanced Study, Princeton, 1971 ; N. Christ, Preprint Columbia University, NYO-1932(2)-174 | DOI | MR | Zbl | MR | Zbl | MR

[3] M. K. Volkov, Ann. Phys. (N. Y.), 49 (1968), 202 | DOI | MR

[4] E. R. Speer, J. Math. Phys., 9 (1968), 1404 ; E. R. Speer, Generalized Feynman Amplitudes, Princeton University Press, 1969 | DOI | MR

[5] M. Veltman, Physica, 29 (1963), 186 | DOI | MR | Zbl