Nonpolynomial Lagrangians (higher perturbation orders)
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 273-287
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that a theory with a nonpolynomial Lagrangian remains finite in higher perturbation orders in the principal coupling constant $G$. It is also shown that the $S$ matrix remains unitary in the third perturbation order in $G$. The order of growth of the scattering amplitude is found in an arbitrary perturbation order.
@article{TMF_1972_11_3_a0,
author = {M. K. Volkov},
title = {Nonpolynomial {Lagrangians} (higher perturbation orders)},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--287},
year = {1972},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/}
}
M. K. Volkov. Nonpolynomial Lagrangians (higher perturbation orders). Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 3, pp. 273-287. http://geodesic.mathdoc.fr/item/TMF_1972_11_3_a0/
[1] M. K. Volkov, EChAYa, 2:1 (1971), 33, (sm. ssylki) | MR
[2] M. K. Volkov, Commun. Math. Phys., 7 (1968), 289 ; A. Salam, J. Strathdee, Phys. Rev., D1 (1970), 3296 ; J. G. Taylor, Preprint, April, 1971, University of Southampton ; K. Pohlmeyer, Preprint, Institute for Advanced Study, Princeton, 1971 ; N. Christ, Preprint Columbia University, NYO-1932(2)-174 | DOI | MR | Zbl | MR | Zbl | MR
[3] M. K. Volkov, Ann. Phys. (N. Y.), 49 (1968), 202 | DOI | MR
[4] E. R. Speer, J. Math. Phys., 9 (1968), 1404 ; E. R. Speer, Generalized Feynman Amplitudes, Princeton University Press, 1969 | DOI | MR